Viết công thức tính nửa góc ở đỉnh của một hình nón (góc α của tam giác vuông OAS – hình 99) sao cho diện tích mặt khai triển của mặt nón bằng một một phần tư diện tích của hình tròn (bán kính SA).
Hình 99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Diện tích hình quạt :
Diện tích xung quanh của hình nón: Sxq = π.r.l
Theo đầu bài ta có: Sxq= Sq => π.r.l=
Vậy l = 4r
Suy ra sin(a) = = 0,25
Vậy a = 14o28’
iải:
Theo đề bài: góc ở đỉnh cả hình nón là 600 nên suy ra đường kính của đường tròn đáy của một hình nón bằng a(do ∆ABC đều). Vậy bán kính đáy của hình nón là
Đường sinh của hình nón là a.
Độ dài cung hình quạt n0, bán kính a bằng chu vi đáy là a.
Độ dài cung hình quạt trong n0, bán kính a bằng chu vi đáy hình tròn nên ta có:
Suy ra n0 = 1800.
Chọn đáp án A
Xét thiết diện qua trục của hình nón N là ∆ A B C cân tại A.
Theo định lí hàm số sin ta có
mà AB = AC
⇒ ΔABC đều
⇒ BC = AC = a
⇒ bán kính đáy hình nón: r = BO = BC/2 = a/2
⇒ Chu vi hình tròn đáy: C = 2πr = πa
Khai triển mặt xung quanh hình nón ta được hình quạt AOB có bán kính R = a.
Độ dài cung AB:
Ta luôn có: l = C ⇒ ⇒ x = 180º.