Tính giới hạn: l i m [ 1 1 . 3 + 1 2 . 4 + . . . . . . + 1 n ( n + 2 ) ]
A. 3/4
B. 1
C. 0
D. 2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\lim\frac{6n^3-2n+1}{(5n^3-n)(n^2+n-1)}=\lim \frac{6-\frac{2}{n^2}+\frac{1}{n^3}}{(5-\frac{1}{n^2})(n^2+n-1)}\)
Ta thấy:
\(\lim\frac{6-\frac{2}{n^2}+\frac{1}{n^3}}{5-\frac{1}{n^2}}=\frac{6}{5}\)
\(\lim \frac{1}{n^2+n-1}=0\)
$\Rightarrow L=0$
Chia cả tử và mẫu cho \(n^5\)
\(=\lim\dfrac{\left(\dfrac{2n-n^3}{n^3}\right)\left(\dfrac{3n^2+1}{n^2}\right)}{\left(\dfrac{2n-1}{n}\right)\left(\dfrac{n^4-7}{n^4}\right)}=\lim\dfrac{\left(\dfrac{2}{n^2}-1\right)\left(3+\dfrac{1}{n^2}\right)}{\left(2-\dfrac{1}{n}\right)\left(1-\dfrac{7}{n^4}\right)}\)
\(=\dfrac{-1.3}{2.1}=-\dfrac{3}{2}\)
\(\text{Lim}\dfrac{3^n-4^n+1}{2.4^n+2^n}=\lim\dfrac{\left(\dfrac{3}{4}\right)^n-1+\left(\dfrac{1}{4}\right)^n}{2+\left(\dfrac{2}{4}\right)^n}=-\dfrac{1}{2}\)
Chọn A.
Ta có :