Có 3 môn thi Toán, Lí, Hóa cần xếp vào 3 buổi thi, mỗi buổi 1 môn sao cho môn Toán không thi buổi đầu thì số cách xếp là:
A. 3!
B. 2!
C. 3! – 2!
D. 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số phòng là a ta có:
a thuộc ƯCLN(96;120;75)
Ta có:
96 = 2^5 x 3
120 = 2^3 x 3 x 5
75 = 3 x 5^2
=>ƯCLN(96;120;75) = 3 x 5 = 15
Do đó chia được 15 phòng.
Có thể xếp ít nhất 3 phòng vì ước chung nhỏ nhất của 96;120;75 là 3
Số cách xếp bất kì 3 môn vào 3 buổi thi bất kì là: 3!
Giả sử môn Toán luôn thi buổi đầu, thì số cách xếp 2 môn còn lại vào bất kì 2 buổi còn lại là: 2!
Vậy số cách xếp cần tìm: 3! – 2!.
Chọn C.