Từ các chữ số 0, 1, 2, 3, 4, 6, 8 lập được bao nhiêu số có ba chữ số khác nhau luôn có mặt chữ số 3?
A. 100
B. 180
C. 80
D. 125
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: số 2 đứng đầu:
Chọn 2 chữ số từ 6 chữ số còn lại và hoán vị: \(A_6^2=30\) cách
TH2: số 2 không đứng đầu:
Chọn số hàng trăm: có 5 cách (khác 0 và 2)
Chọn 1 chữ số còn lại: 5 cách, hoán vị nó với 2: có \(2!=2\) cách
\(\Rightarrow5.5.2=50\) cách
Tổng cộng: \(30+50=80\) số
a. Gọi chữ số cần lập là \(\overline{abcd}\)
TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)
a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)
\(\Rightarrow4.8.8.7\) số
Tổng cộng: \(A_9^3+4.8.8.7=...\)
b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách
Hoán vị 3 chữ số 0,1,2: có \(3!\) cách
Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách
Ta đi tính số trường hợp 0 đứng đầu:
Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách
Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách
Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số
gọi số tm yêu cầu là \(\overline{abcde}\)
a)Th1 giả sử abc,abd,abe,acd,ade,ace=1,2,3=> 2 số còn lại có 5.4 cách chọn=> có tất cả 6.3!.4.5=720 số
Th2 giả sử bcd=1,2,3;cde=1,2,3;bce=1,2,3,bde=1,2,3=>a khác 0=>a có 4 cách chọn và số còn lại có 4 cách chọn=>có tất cả 4.4.3!.4=384 cách
=> có tất cả 720+384 =1104 cách chọn số tm
Gọi số cần tìm có dạng
TH1. Với a=3, suy ra có 6 cách chọn b, 5 cách chọn c
Theo quy tắc nhân có 6.5=30 số.
TH2. Với b=3, suy ra có 5 cách chọn a, 5 cách chọn c
Theo quy tắc nhân có 5.5=25 số.
TH3. Với c=3, tương tự với TH2.
Vậy có tất cả 30+25+25=80 số cần tìm.
Chọn C.