K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Sử dụng phương pháp gián tiếp:

Lấy ra 9 viên bi trong 15 viên bi bất kỳ, có    C 15 9 cách.

Trường hợp 1: lấy 9 viên bi chỉ có 2 màu là xanh và đỏ, có C 11 9   cách.

Trường hợp 2: lấy 9 viên bi chỉ có 2 màu là xanh và vàng, có C 9 9   cách.

Trường hợp 3: lấy ra 9 viên bi chỉ có màu đỏ và vàng, có C 10 9   cách.

Vậy có : C 15 9 - ( C 11 9 + C 9 9 + C 10 9 ) = 4984 cách.

Chọn C.

a: Số cách chọn là:

\(C^2_5\cdot C^1_4\cdot C^3_6+C^2_5\cdot C^2_4\cdot C^2_6=1700\left(cách\right)\)

b: Số cách chọn 9 viên bất kì là: \(C^9_{15}\left(cách\right)\)

Số cách chọn 9 viên ko có đủ 3 màu là:

\(C^9_9+C^9_{11}+C^9_{10}=66\left(cách\right)\)

=>Có 4939 cách

1 tháng 1 2020

Các trường hợp xảy ra theo yêu cầu đề:

Trường hơp 1: 2 xanh, 2 vàng, 2 đỏ, có:  cách.

Trường hợp 2: 2 xanh,1 vàng, 3 đỏ, có:  cách.

Vậy có :  cách.

Chọn D.

24 tháng 7 2017

Đáp án A

Lấy 8 viên chỉ có 2 màu :

13 tháng 1 2018

19 tháng 12 2016

không nhìn vào hộp ta cần lấy ít nhất số viên bi để chắc chắn đủ 3 màu là

      9+6+1=16(viên)

đáp số 16viên

k nha bạnNguyễn Thùy trang

12 viên nha

k đi mừ

chúc bn học giỏi

#_#

27 tháng 12 2020

Không gian mẫu là 15C4 = 1365.

Lấy từ hộp 4 viên có đủ 3 màu. 

4C2.5C1.6C1 + 4C1.5C2.6C1 + 4C1.5C1.6C2 = 720

=> P = 1 - 720/1365

NV
21 tháng 12 2022

a.

Có \(C_{17}^5\) cách lấy 5 viên bi tùy ý từ 17 viên bi

b.

Lấy 1 bi trắng từ 7 bi trắng, 2 bi xanh từ 4 bi xanh và 2 bi đỏ từ 6 bi đỏ

Số cách lấy là: \(C_7^1.C_4^2.C_6^2\) cách

c.

Các trường hợp thỏa mãn: 1 trắng 1 đỏ 3 xanh, 1 trắng 2 đỏ 2 xanh, 1 trắng 3 đỏ 1 xanh, 2 trắng 1 đỏ 2 xanh, 2 trắng 2 đỏ 1 xanh

Số cách lấy là:

\(C_7^1C_6^1C_4^3+C_7^1C_6^2C_4^2+C_7^1C_6^3C_4^1+C_7^2C_6^1C_4^2+C_7^2C_6^2C_4^1\) cách

Thầy có thể giải thích cụ thể hơn về câu a được không thưa thầy?

6 tháng 5 2023

th1: (2 vàng, 1 đỏ, 1 trắng) số cách chọn là 6C2 x 5C1 x 4C1 = 300(cách)

th2:(1 vàng, 2 đỏ, 1 trắng) số cách chọn là 6C1 x 5C2 x 4C1 = 240 (cách)

th3:(1 vàng, 1 đỏ, 2 trắng) số cách chọn là 6C1 x 5C1 x 4C2 = 180 (cách)

-Vậy tổng số cách chọn là 300+240+180=720 cách