Chứng minh rằng a b c a b c ¯ chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
a+b+c=a+2b chia hết cho 7 (b=c)
abc=100a+10b+c=100a+11b=98a+7b+2(a+2b)
Ta thấy 98a+7b = 7(14a+b) chia hết cho 7
mà a+2b chia hết cho 7 => 2(a+2b) chia hết cho 7
=> abc chia hết cho 7
1)a)Ta có:\(a^3-13a=a^3-a-12a=\left(a-1\right)a\left(a+1\right)-12a\)
Ta có:\(\left(a-1\right)a\left(a+1\right)⋮\)2 và 3;\(12a⋮6\)
Mà (2;3)=1\(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
\(\Rightarrow\left(a-1\right)a\left(a+1\right)-12a⋮6\left(đpcm\right)\)
b)Hình như đề sai
Sơ đồ con đường
Lời giải chi tiết
Bước 1. Phân tích số.
Bước 2. Áp dụng tính chất chia hết của một tích.
Ta có:
a b c a b c ¯ = 1000 a b c ¯ + a b c ¯ = 1001 a b c ¯
Vì 1001 ⋮ 7 ⇒ 1001 a b c ¯ ⋮ 7 ⇒ a b c a b c ¯ ⋮ 7