So sánh hai phân thức
x - y x + y v à x 2 - y 2 x 2 + y 2 với (x > y > 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể thế vào: x=2;y=1.Ta có:
\(\frac{x-y}{x+y}=\frac{2-1}{2+1}=\frac{1}{3}\) và \(\frac{x^2-y^2}{x^2+y^2}=\frac{2^2-1^2}{2^2+1^2}=\frac{3}{5}\)
\(\Rightarrow\frac{1}{3}< \frac{3}{5}\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
cái này mik giải để giúp mọi người nếu bạn cho rằng sai thì giải thử xem.
Ta có :
A = \(\dfrac{\text{y^2 ( x + 1 ) + ( x + 1 ) }}{y^2+1}\) = \(\dfrac{\left(y^2+1\right)\left(x+1\right)}{y^2+1}\) = x+1 (1)
B = \(\dfrac{y^2\left(x-1\right)+2x-x}{y^2+2}=\dfrac{\left(y^2+2\right)\left(x-1\right)}{y^2+2}=x-1\) (2)
Từ (1) và (2)
=> A > B
\(\dfrac{\text{y^2 ( x + 1 ) + ( x + 1 ) }}{y^2+1}\) = \(\dfrac{\left(y^2+1\right)\left(x+1\right)}{y^2+1}\)
Ta có: