Cho biểu thức: B = x 3 + x 2 - 4 x - 4 3 x 3 - 12 x
a) Tìm điều kiện xác định của biểu thức B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)
a) \(ĐKXĐ:\) x khác + 3
\(b,P=\dfrac{3\left(x-3\right)+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{4}{x-3}\)
c) \(P=4=\dfrac{4}{x-3}=4=x-3=1=x=4\)
a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(P=\dfrac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{4}{x-3}\)
c: Để P=4 thì x-3=1
hay x=4
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(B=\dfrac{6-7x}{x^2-4}+\dfrac{3}{x+2}-\dfrac{2}{2-x}\)
\(=\dfrac{6-7x+3x-6+2x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-2x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=-\dfrac{2}{x+2}\)
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
a,ĐKXĐ:\(\left\{{}\begin{matrix}x-4\ne0\\x+4\ne0\\x^2-16\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne-4\\x\ne\pm4\end{matrix}\right.\Leftrightarrow x\ne\pm4\)
b,\(\dfrac{4}{x-4}+\dfrac{3}{x+4}.\dfrac{6x}{x^2-16}=\dfrac{4}{x-4}+\dfrac{18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4\left(x+4\right)^2+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4\left(x^2+8x+16\right)+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4x^2+32x+64+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4x^2+50x+64}{\left(x-4\right)\left(x+4\right)^2}\)
a: ĐKXĐ: x>=0; x<>1
\(P=\dfrac{-3+\sqrt{x}-1}{x-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}-4}{\sqrt{x}-1}\)
b: Để P=5/4 thì \(\dfrac{\sqrt{x}-4}{\sqrt{x}-1}=\dfrac{5}{4}\)
=>\(5\sqrt{x}-5=4\sqrt{x}-16\)
=>căn x=-11(loại)
a: |x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2(nhận) hoặc x=4(loại)
Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)
b: ĐKXĐ: x<>4; x<>-4
\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)
=-4x/x-4
c: A+B
=-4x/x-4+x^2+4/x-4
=(x-2)^2/(x-4)
A+B>0
=>x-4>0
=>x>4
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)
a) Điều kiện : 3x2 – 12x ≠ 0; 3x3 – 12x = 3x(x2 – 4) = 3x(x – 2)(x + 2).
Vậy: x ≠ 0; x ≠ 2 và x ≠ -2.