K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

Đáp án C

26 tháng 1 2018

a, Tính được r = 1,44cm Þ Smc = 4p r 2  = 26,03 c m 2

b, Ta có  V c = 4 3 πR 2 = 15 , 8 cm 3 => R = 1,56cm

=>  V h n = 1 3 πR 2 h ≈ 2 , 53 πcm 3

4 tháng 4 2018

9 tháng 6 2017

a) Với giả thiết ở đề bài, ta có thể tính được r từ đó tính được diện tích mặt cầu gần bằng \(26cm^2\)

b) Tương tự câu a, ta tính được thể tích hình nón là \(7,9cm^3\)

20 tháng 5 2017

20 tháng 7 2017

Giải bài 3 trang 99 sgk Hình học 12 | Để học tốt Toán 12

Gọi H là tâm mặt đáy của hình nón, O là tâm mặt cầu (S), đường thẳng IH cắt mặt cầu (S) tại điểm K.

20 tháng 2 2018

Phương pháp:  

+ Hình nón có chiều cao h và bán kính R thì có thể tích là 

Vì hình nón có bán kính R và chiều cao h bằng nhau nên h = R và thể tích hình nón đã cho là 

Khi đó H là tâm đường tròn ngoại tiếp tam giác SAB và H cũng là tâm mặt cầu ngoại tiếp hình nón đỉnh S.

Nên bán kính mặt cầu là HS = R nên thể tích hình cầu này 

14 tháng 6 2021

Hình vẽ đâu bn.(không có hình thì mik ko bt AB là đường sinh hay chiều cao nhé. Nhưng thường thì AB là đường sinh)

(nếu đề bài AB là đường cao thì bn đăng lại nhé)

\(Sxq=\pi\left(r+R\right)l=\pi\left(3+6\right)4=36\pi\left(cm^2\right)\)

\(Stp=\pi\left(r+R\right)l+\pi\left(r^2+R^2\right)=36\pi+\pi\left(3^2+6^2\right)=36\pi+45\pi\)

\(=81\pi\left(cm^2\right)\)

có: \(h=\sqrt{l^2-\left(R-r\right)^2}=\sqrt{4^2-\left(6-3\right)^2}=\sqrt{7}cm\)

\(V=\dfrac{1}{3}\pi\left(r^2+R^2+rR\right).h\)\(=\dfrac{1}{3}\pi.\left(3^2+6^2+3.6\right).\sqrt{7}=21\sqrt{7}.\pi\left(cm^3\right)\)

 

AH
Akai Haruma
Giáo viên
16 tháng 6 2021

Lời giải:

 

Diện tích xung quanh hình nón:

$\pi (r+R).l=\pi (6+3).4=36\pi$ (cm vuông)

Diện tích toàn phần:

$36\pi+\pi r^2+\pi R^2=36\pi +\pi.3^2+\pi. 6^2=81\pi$ (cm vuông)

Thể tích:

Chiều cao hình nón: $\sqrt{4^2-(6-3)^2}=\sqrt{7}$ (cm)

$\frac{1}{3}\pi (r^2+R^2+r.R)h=\frac{1}{3}\pi (3^2+6^2+3.6).\sqrt{7}=21\sqrt{7}\pi$ (cm khối)