K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

Chọn đáp án A

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Gọi I, J lần lượt là trung điểm của BH và CH.

Để chứng minh DE là tiếp tuyến của đường tròn tâm I đường kính BH ta chứng minh ID ⊥ DE hay Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vì D, E lần lượt thuộc đường tròn đường kính BH và HC

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Nên DE là tiếp tuyến của đường tròn đường kính BH

 

Từ chứng minh trên suy ra các phương án B, C, D đúng

20 tháng 12 2018

Đáp án A

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Gọi I, J lần lượt là trung điểm của BH và CH.

Để chứng minh DE là tiếp tuyến của đường tròn tâm I đường kính BH ta chứng minh ID ⊥ DE hay Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vì D, E lần lượt thuộc đường tròn đường kính BH và HC

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Nên DE là tiếp tuyến của đường tròn đường kính BH

Từ chứng minh trên suy ra các phương án B, C, D đúng

22 tháng 3 2021

Để chứng minh DE là tiếp tuyến của đường tròn tâm I đường kính BH ta chỉ cần chứng minh ID\perp DEID⊥DE .

Vì D, E lần lượt thuộc đường tròn đường kính BH và HC nên ta có: \widehat{BDH}=\widehat{CEH}=90^oBDH=CEH=90o.
Suy ra tứ giác ADHE là hình chữ nhật.
Gọi O là giao điểm của AH và DE, khi đó ta có OD = OH = OE = OA.
Suy ra tam giác ODH cân tại O vì vậy \widehat{ODH}=\widehat{OHD}ODH=OHD.
Ta cũng có tam giác IDH cân tại I suy ra \widehat{IDH}=\widehat{IHO}IDH=IHO.
Suy ra \widehat{IDO}+\widehat{OHD}=\widehat{IHD}+\widehat{IHA}=90^oIDO+OHD=IHD+IHA=90o \Leftrightarrow\widehat{IDO}=90^o⇔IDO=90o hay DI \perp⊥ DE.
Ta có DI\perp DE\left(D\in\left(I\right)\right)DI⊥DE(D∈(I)) suy ra DE tiếp xúc với (I) tại D.
Chứng minh tương tự ta cũng có DE tiếp xúc với (J) tại E.

Vậy DE là tiếp tuyến chung của đường tròn (I) và đường tròn (J).

27 tháng 11 2021

Vì D, E lần lượt thuộc đường tròn đường kính BH và HC nên ta có : góc BHD = góc CEH=90°

=> tứ giác ADHE là hình chữ nhật

Gọi O là giao điểm của AH và DE khi đó ta có OD=OE=OA 

=> Tam giác ODH cân tại O vì vậy góc ODH = góc OHD

Ta cũng có tam giác IDH cân tại I suy ra góc IDH= góc IHO

=> góc IDO + góc OHD = góc IHD + góc IHA=90° <=> góc IDO = 90° hay DI ⊥ DE

ta có DI ⊥ DE ( D ∈ I) => DE tiếp xúc với (I) tại D

Ta có  DE tiếp xúc với (J) tại E

Vậy DE là tiếp tuyến chung của đường tròn (I) và đường tròn (J)
\perp  \perp\perp\per\perp

 

 

     

a: O là trung điểm của BC

b: Xét \(\left(\dfrac{BH}{2}\right)\) có

ΔBDH là tam giác nội tiếp

BH là đường kính

Do đó: ΔBDH vuông tại D

Xét \(\left(\dfrac{CH}{2}\right)\)

ΔCHE nội tiếp đường tròn

CH là đường kính

Do đó: ΔCHE vuông tại E

Xét tứ giác ADHE có 

\(\widehat{AEH}=\widehat{ADH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

18 tháng 9 2021

tính bán kính đường tròn ngoại tiếp làm sao ạ?

24 tháng 8 2019

a, HS tự làm

b, HS tự làm

c, Chú ý hình thang vuông OEFO’ và xét đường trung bình của hình thang này

d, Từ I kẻ đường thảng song song với EF cắt OE tại M , cắt O’F tại N

Đặt BH=2R; CH= 2R’

∆IOM vuông tại M có:

I M 2 = I O 2 - O M 2 =  R + r 2 - R - r 2 = 4 R r

Tương tự , ∆ION có  I N 2 = 4 R ' r

Suy ra IM+IN=EF=AH

Vậy  2 R r + 2 R ' r = 2 R R '

=>  r R + R ' = R R '

=> r =  R R ' R + R ' 2