Biểu thức \(\frac{1}{\sqrt{x}+5}\)đạt giá trị lớn nhất khi x bằng
bày mình vs nhé ^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b ) \(x-\sqrt{3x}+1=x-2\cdot\frac{\sqrt{3}}{2}+\frac{3}{4}-\frac{3}{4}+1\)
\(=\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)
vì \(\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)^2\ge0\)với mọi x
=> \(\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)voi moi x
=>\(\frac{1}{\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}}\le\frac{1}{\frac{1}{4}}\le4\)
=> max A \(\le4\)
dau = xay ra <=> \(\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)=0\Leftrightarrow x=\frac{3}{4}\)
Biểu thức B đạt giá trị nhỏ nhất khi:B=\(\frac{1}{\sqrt{x}+2016}\) voi \(\sqrt{x}\) =0 ta co B=\(\frac{1}{0+2016}\) =\(\frac{1}{2016}\)
\(B=\frac{1}{\sqrt{x}+5}\) đạt GTLN thì \(\sqrt{x}+5\) nhỏ nhất
\(\Leftrightarrow\sqrt{x}\) nhỏ nhất
\(\Rightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\)
a: \(P=\dfrac{x+\sqrt{x}+1+11\sqrt{x}-11+34}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+12\sqrt{x}+24}{\sqrt{x}+2}\)
b: Thay \(x=3-2\sqrt{2}\) vào P, ta được:
\(P=\dfrac{3-2\sqrt{2}+12\left(\sqrt{2}-1\right)+24}{\sqrt{2}-1+2}\)
\(=\dfrac{27-2\sqrt{2}+12\sqrt{2}-12}{\sqrt{2}+1}=5+5\sqrt{2}\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Để biểu thức trên có giá trị lớn nhất thì: \(\frac{1}{\sqrt{x}+5}=1\Rightarrow\sqrt{x}=-4\) ( vô lí ). Vậy \(\sqrt{x}+5\ge5\)
\(\Rightarrow\) Để biểu thức trên có giá trị lớn nhất thì: \(\frac{1}{\sqrt{x}+5}=\frac{1}{5}\Rightarrow\sqrt{x}+5=5\Rightarrow\sqrt{x}=0\Leftrightarrow x=0\)
Tick mik nha