Một hình lăng trụ tam giác đều có cạnh đáy bằng a, cạnh bên bằng 2a. Tính bán kính mặt cầu ngoại tiếp hình lăng trụ đó.
A. 4 a 3
B. 2 a 3 3
C. a 12 6
D. a 39 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Cho lăng trụ tam giác đều ABC.A'B'C'.
Gọi G, G; lần lượt là tâm của hai đáy ABC và A'B'C'.
Ta có GG' chính là trục của các tam giác ABC và A'B'C' .
Gọi O là trung điểm của GG' thì O cách đều 6 đỉnh của hình lăng trụ
nên là tâm của mặt cầu ngoại tiếp hình lăng trụ. Bán kính mặt cầu là R = OA.
Xét tam giác OAG vuông tại G, ta có:
Gọi I,I’ lần lượt là trọng tâm của hai tam giác ABC, A'B'C'. Khi đó I và I’ đồng thời cũng là tâm của hai đường tròn ngoại tiếp các tam giác ấy và nằm trong hai mặt phẳng cùng vuông góc với đường thẳng II’. Suy ra trung điểm O của đoạn II’ chính là tâm của mặt cầu ngoại tiếp đi qua 6 đỉnh của lăng trụ đã cho.
Do đó R = O A = A I 2 + O I 2 = 2 3 . a 3 2 2 + a 2 2 = a 21 6
Đáp án A
Gọi F là trung điểm của AA’. Trong mặt phẳng (AA'H) kẻ đường trung trực của AA’ cắt d tại I. Suy ra I là tâm mặt cầu ngoại tiếp tứ diện A'ABC và bán kính R = IA
Ta có: A E I ^ = 60 o , E F = 1 6 A A ' = a 6
I F = E F . tan 60 o = a 3 6 R = A F 2 + F I 2 = a 3 3
Đáp án C
Bán kính đường tròn ngoại tiếp đáy của hình lăng trụ là
Khi đó bán kính mặt cầu ngoại tiếp hình lăng trụ đó là
Chọn B.