Cho hàm số y=f(x) có đạo hàm trên ℝ . Đồ thị hàm số y=f’(x) như hình vẽ bên. Hàm số g x = f x - x 3 3 + x 2 - x + 2 đạt cực đại tại
A. x = -1
B. x = 0
C. x = 1
D. x = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Ta có: g(x) = f(x-2017) - 2018x + 2019.
Nhận xét: tịnh tiến đồ thị hàm số y = f'(x) sang bên phải theo phương của trục hoành 2017 đơn vị ta được đồ thị hàm số y = f'(x-2017) . Do đó, số nghiệm của phương trình f'(x) = 2018 bằng số nghiệm của phương trình (*).
Dựa vào đồ thị ta thấy phương trình (*) có nghiệm đơn duy nhất hay hàm số đã cho có duy nhất 1 điểm cực trị.
Đáp án B
(1) là phương trình hoành độ giao điểm của đồ thị f'(t) và đường thẳng d : y = -t (hình vẽ)
Dựa vào đồ thị của f'(t) và đường thẳng y =-t ta có
Từ đồ thị hàm số f(x) ta thấy đồ thị cắt trục hoành tại ba điểm phân biệt có hoành độ x=0;x=1;x=3
Lại thấy đồ thị hàm số y=f(x) có ba điểm cực trị nên
Hàm số y = f x 2 có đạo hàm y'=2f(x).f '(x)
Xét phương trình
Ta có BXD của y' như sau
Nhận thấy hàm số y = f x 2 có y' đổi dấu từ âm sang dương tại ba điểm x=0;x=1;x=3 nên hàm số có ba điểm cực tiểu. Và y' đổi dấu từ dương sang âm tại hai điểm x = x 1 ; x = x 2 nên hàm số có hai điểm cực đại.
Chọn đáp án D.
Chọn A.
Giải phương trình g ' x = 0
Từ đồ thị hàm số y = f ' x
ta có f ' x = - 1
Ta có BBT của hàm g (x)
Từ BBT ta thấy hàm số g (x) đạt cực tiểu tại x = 1.
Đáp án A.
Ta có g ' x = x 2 - 2 ' f ' x 2 - 2 = 2 x . f ' x 2 - 2 ; ∀ x ∈ ℝ .
Khi đó g ' x < 0 ⇔ x . f ' x 2 - 2 < 0 ⇔ [ x < 0 f ' x 2 - 2 > 0 x > 0 f ' x 2 - 2 < 0 ⇔ [ x < 0 x 2 - 2 > 2 x > 0 x 2 - 2 < 2 ⇔ [ 0 < x < 2 x < - 2 .
Vậy hàm số nghịch biến trên khoảng - ∞ ; - 2 và (0;2) khẳng định A là sai.
Ta có
Suy ra số nghiệm của phương trình g'(x) = 0 chính là số giao điểm giữa đồ thị của hàm số f'(x) và parapol
Dựa vào đồ thị ta suy ra
Bảng biến thiên
Dựa vào bảng biến thiên ta thấy g(x) đạt cực đại tại x = 1
Chọn C.