Cho hình thang ABCD đáy nhỏ BC. Từ trung điểm I của CD ta kẻ đường thẳng d song song vs AB và kẻ AH và BE vuông góc vs d lần lượt tại H và E.
Chứng minh: SABEH=SABCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AH, BE cùng vuông góc d nên // nhau
AB//HE (AB//d đề cho)
=> ABEH là hình chữ nhật (2 cặp cạnh đối diện song song)
=> Diện tích ABEH = AB x BE (1)
Gọi M là giao điểm d và AD
gọi N là điểm thuộc d sao cho đối xứng với M qua I => IM = IN
Lại có IC = ID (I là trung điểm CD)
=> CNDM là hình bình hành => CN//MD hay CN//AD
Mà BC//AD (hình thang)
Nên B,C,N thẳng hàng
Chứng minh tam giác ICN = IDM (cạnh-góc-cạnh, 2 cặp cạnh bằng nhau chứng minh trên, góc đối đỉnh bằng nhau)
=> S hình thang ABCD = S hình bình hành ABNM (ABNM là hbh có 2 cặp cạnh //) (2)
BE vuông góc MN (BE vuông góc d) => S ABNM = AB x BE (3)
Từ (1) (2) (3)=> S ABCD = S ABEH
hờ hớ, tớ giải được nhưng dài lắm, hôm nào cô chữa t làm cho