Một số tự nhiên chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4 và
chia hết cho 13.
a) Tìm số nhỏ nhất thỏa mãn các tính chất trên ;
b) Tìm dạng chung của tất cả các số có tính chất trên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Gọi là số nhỏ nhất thỏa a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4
Thế thì a + 2 chia hết cho 3, 4, 5 và 6
=> a + 2 là BC (3, 4, 5, 6)
BCNN (3, 4, 5, 6) = 60
=> a + 2 là B(60) = { 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, ...}
Trong các số trên chỉ có số 600 là thỏa
vì a + 2 = 600
=> a = 600 - 2 = 598 chia hết cho 13.
Vậy a = 598
b) Xin lỗi nha mình ko biết làm
Moi so tren deu thieu 2 don vi thi chia het cho 3,4,5,6
goi so can tim la a ta co a+2 chia het cho 3,4,5,6
vay a +2 la boi cua 3,4,5,6,
ban tu phan tich va tim nha
roi xem trong do co so nao chia het cho 13 ko
do la dap so do
tick nha moi nguoi
Mình ko chắc câu b lắm
a) Gọi a là số tự nhiên đó
Ta có a chia 3 dư 1 => ( a + 2 ) chia hết cho 3
a chia 4 dư 2 => ( a + 2 ) chia hết cho 4
a chia 5 dư 3 => ( a + 2 ) chia hết cho 5
a chia 6 dư 4 => ( a + 2 ) chia hết cho 6
nên ( a + 2 ) thuộc BC(3;4;5;6) = B(60) = {0;60;120;180;240;300;360;420;480;540;600;660;...}
=> a thuộc {58;118;178;238;298;358;418;478;538;598;658;...}
mà a chia hết cho 13 và a nhỏ nhất nên a = 598
b) k + 2
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
Gọi số tự nhiên đó là a ta có:
a chia hết cho 11 suy ra a thuộc {11;22;33;44;..}
mà a+1 chia hết cho 3
a+2 chia hết cho 4
a +4 chia hết cho 6
nên a =111
Gọi số cần tìm là:a
=>(a+2) chia hết cho 3;4;5;6
Vậy(a+2) là bội chung của 3;4;5;6
=>(a+2)=60k(k thuộc N)
Vì a chia hết cho 11 nên:
60k chia 11 dư 2
<=>55k+5k chi hết cho 11 dư 2
<=>5k chia 11 dư 2
<=>k chi cho 11 dư 7
=>k=11d+7(với d thuộc N)
=>Số cần tìm là:a=60k-2=60(11d +7)-2=660d+418(với d thuộcN)
k mik nha!
Tình bạn vĩnh cửu Phương Dung