Cho tam giác ABC có M và N lần lượt là trung điểm của AC và AB. Gọi AD là tia phân giác của góc B A C ^ = D B C ^ , tia AD cắt MN tại P. Hỏi tam giác nào đồng dạng với tam giác ANP
A. Δ ABD
B. ΔAMP
C. ΔABD
D. Δ ACD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hồ Anh Tuấn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Tham khảo link này: https://olm.vn/hoi-dap/detail/8411850815.html
tự kẻ hình:3333
a) vì BE là phân giác của QBA=> B1=B2=QBA/2
vì BD là phân giác của ABC=> B3=B4=ABC/2
ta có EBD= B2+B3=QBA/2 +ABC/2= QBA+ABC/2= 180 độ/2=90 độ ( QBA kề bù với ABC)
trong tứ giác AEBD có EBD= 90 độ=> AEBD là HCN=> EBD=BDA=DAE=AEB= 90 độ
=> BEQ= 90 độ ( kề bù với AEB), BDP= 90 độ( kề bù với BDA)
=> BE vuông góc với AQ, BD vuông góc với AP
b)vì AEBD là hcn => AE=BD,
xét tam giác BEQ và tam giác BEA có
B1=B2(gt)
BE chung
BEQ=BEA(=90 độ)
=> tam giác BEQ= tam gáic BEA(gcg)
=> AE=EQ ( hai cạnh tương ứng)
ta có DBP+EBQ= 90 độ( EBD= 90 độ)
VÌ EBQ vuông tại E=> EQB+EBQ= 90 độ
=> DBP=EQB (=90 độ-EBQ)
xét tam giác BEQ và tam giác PDB có
EQ=BD(=AE)
BEQ=PDB(=90 độ)
DBP=EQB(cmt)
=> tam giác BEQ= tam gáic PDB(gcg)
=> QB=PB ( hai cạnh tương ứng)
=> B là trung điểm của PQ
c) xét tam giác AED và tam giác DBA có
AE=BD(cmt)
DAE=BDA(=90 độ)
AD chung
=> tam giác AED= tam giác DBA (cgc)
=> AB=DE( hai cạnh tương ứng)
a) Do M, N là trung điểm của AB và AC nên MN là đường trung bình tam giác ABC.
Suy ra MN//BC, hay ta có: \(\widehat{MDB}=\widehat{DBP}\) (Hai góc so le trong)
Mà \(\widehat{MBD}=\widehat{DBP}\) (Do BD là phân giác)
\(\Rightarrow\widehat{MDB}=\widehat{MBD}\). Vậy tam giác MBD cân tại M hau MB = MD.
Xét tam giác ADB có MD là trung tuyến mà bằng một nửa cạnh tương ứng nên tam giác ADB vuông tại D.
Vậy \(BD\perp AP\)
Hoàn toàn tương tự \(BE\perp AQ\)
b) Xét tam giác ABP có M là trung điểm AB, MD // BP nên MD là đường trung bình tam giác ABP.
Vậy nên BP = 2MD . Tương tự BQ = 2EM
Mà EM = MD ( = MB)
Vậy nên BP = BQ hay B là trung điểm QP.
c) Do BE, BD là các tia phân giác trong và ngoài của một đỉnh trong tam giác nên EB vuông góc BD
Vậy tứ giác EADB có 3 góc vuông, suy ra EADB là hình chữ nhật.
\(\Rightarrow AB=ED\)
cô huyền ơi làm giúp em bài này với , : https://olm.vn/hoi-dap/question/1134332.html
a: Xét ΔIAB và ΔIDC có
IA=ID
AB=DC
IB=IC
=>ΔIAB=ΔIDC
=>góc IAB=góc IDC=góc IAD
=>AI là phân giác của góc BAC
b: Xét ΔAEI vuông tại E và ΔAHI vuông tại H có
AI chung
góc EAI=góc HAI
=>ΔAEI=ΔAHI
=>AE=AH; IE=IH
=>AI là trung trực của EH
Xét tam giác ABC có M và N lần lượt là trung điểm của AC và AB nên MN là đường trung bình của tam giác ABC
Suy ra: MN // BC
Xét tam giác ABD có MP// BD (vì MN// BC)
Suy ra: Tam giác ANP đồng dạng với tam giác ABD.
Chọn đáp án A