K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

a, Theo Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=\sqrt{25+144}=13\)cm 

b,c ta có : sinB = \(\frac{AC}{BC}=\frac{12}{13}\)

Do ^B ; ^C phụ nhau nên \(sinB=cosC=\frac{12}{13}\)=> ^C = 22037'11.51'' ; => ^B = \(67,4^0\)

2 tháng 11 2021

a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow BC^2=AB^2+AC^2\left(đlPytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=\sqrt{25+144}=\sqrt{169}=13\left(cm\right)\)

b) \(\Delta ABC\)vuông tại A (gt)

\(\Rightarrow\sin B=\frac{AC}{BC}=\frac{12}{13};\cos B=\frac{AB}{BC}=\frac{5}{13};\tan B=\frac{AC}{AB}=\frac{12}{5};\cot B=\frac{AB}{AC}=\frac{5}{12}\)

c) \(\Delta ABC\)vuông tại A (gt)

\(\Rightarrow\sin C=\frac{AB}{BC}=\frac{5}{13}\Rightarrow\widehat{C}\approx23^0\)

a: Xét ΔABC vuông tại A có

\(BC^2=AB^2+AC^2\)

hay BC=13(cm)

b: Xét ΔBAC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13}\)

\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{5}{13}\)

\(\tan\widehat{B}=\dfrac{12}{5}\)

\(\cot\widehat{B}=\dfrac{5}{12}\)

8 tháng 10 2021

\(a,\sin\widehat{C}=\dfrac{AB}{BC};\cos\widehat{C}=\dfrac{AC}{BC};\tan\widehat{C}=\dfrac{AB}{AC};\cot\widehat{C}=\dfrac{AC}{AB}\\ b,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\left(pytago\right)\\ \Rightarrow\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13};\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{5}{13}\\ \tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5};\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{5}{12}\)

\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5}\approx\tan67^022'\\ \Rightarrow\widehat{B}\approx67^022'\\ \Rightarrow\widehat{C}=90^0-67^022'=22^038'\)

 

17 tháng 10 2021

Câu 1:

\(\sin\widehat{B}=\dfrac{12}{13}\)

\(\cos\widehat{B}=\dfrac{5}{13}\)

\(\tan\widehat{B}=\dfrac{12}{5}\)

\(\cot\widehat{B}=\dfrac{5}{12}\)

a: Xét ΔBAC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=12(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)

\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)

\(\tan\widehat{ACB}=\dfrac{5}{12}\)

\(\cot\widehat{ACB}=\dfrac{12}{5}\)

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)

\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)

\(\tan\widehat{ACB}=\dfrac{5}{12}\)

\(\cot\widehat{ACB}=\dfrac{12}{5}\)

a: BD/CD=3/4

=>BD/3=CD/4=15/7

=>BD=45/7cm; CD=60/7cm

b: Xét ΔABC vuông tại A và ΔEDC vuông tại E có

góc C chung

=>ΔABC đồng dạng vớiΔEDC

c: AB/ED=CB/CD=7/4

=>9/ED=7/4

=>ED=9*4/7=36/7cm