cmr: 1+3+3^1+3^2+............+3^2014+3^2015 chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (1 + 3 + 3^2) + ....... + (3^2013 + 3^2014+ 3^2015)
=1.13 + ...... + 3^2013.13
=13(1 + 3^3 + ... + 3^2013)
=> chia hết cho 13
Ta gọi biểu thức đó là A
=)3A=3-3^2+3^3-3^4+...+3^2015-3^2016
3A+A=3-3^2+3^3-3^4+...+3^2015-3^2016+1-3+3^2-3^3+...+3^2014-3^2015
=)4A=1-3^2016
=)A=1-3^2016/4
3^2016 có chữ số tạn cùg =1(nhóm 4 chữ số 3 vào nhé)
=)A có chữ số tận cùg =0/4
=)A có chữ số tận cùg = 5 hoặc 0
=)A chia hết cho 5
k cho mình nha ae
Ta có :S = 1+3^2+3^4+..............+3^2014 - (3+3^3+3^5+................+3^2015)
tự làm phần còn lại ,ghép nhóm mà làm nhé
\(\text{Đặt }A=1+3+3^2+...+3^{2015}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2013}+3^{2014}+3^{2015}\right)\)
\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+...+3^{2013}.\left(1+3+9\right)\)
\(=13+3^3.13+...+3^{2013}.13\)
\(=13.\left(1+3^3+...+3^{2013}\right)\text{chia hết cho 13}\)
=> A chia hết cho 13 (đpcm).