Cho tam giác ABC có K là trung điểm của AB,E là trung điểm của AC. Trên tia đối của tia KC lấy điểm M sao cho KM = KC. Trên tia đối của tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng :
a) AM = AN.
b) Ba điểm M, A, N thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAKM và ΔBKC ta có:
AK = BK (Vì K là trung điểm AB)
∠(AKM) =∠(BKC) (đối đỉnh)
KM=KC (giả thiết)
Suy ra: ΔAKM = ΔBKC(c.g.c)
⇒AM =BC (hai cạnh tương ứng)
Và ∠(AMK) =∠(BCK) (2 góc tương ứng)
Suy ra: AM // BC ( vì có cặp góc so le trong bằng nhau)
Tương tự: ΔAEN= ΔCEB(c.g.c)
⇒ AN = BC (2 cạnh tương ứng)
Và ∠(EAN) =∠(ECB) (2 góc tương ứng)
Suy ra: AN // BC (vì có cặp góc so le trong bằng nhau)
Ta có: AM // BC và AN // BC nên hai đường thẳng AM và AN trùng nhau hay A,M,N thẳng hàng (1)
Lại có: AM = AN ( vì cùng bằng BC) (2)
Từ (1) và (2) suy ra: A là trung điểm của MN
Xét \(\Delta AMKvà\Delta BKCcó:\)
KA=KB
góc MKA=góc BKC
KM=KC
\(\Rightarrow\Delta AMK=\Delta BCK\left(c-g-c\right)\)
\(\Rightarrow\)AM=BC (1)
\(\Rightarrow\)MA//BC (góc M so le trong với góc C) (3)
Xét \(\Delta AENvà\Delta BECcó:\)
EA=EC
góc AEN=góc BEC
EN=EB
\(\Rightarrow\Delta AEN=\Delta CEB\left(c-g-c\right)\)
\(\Rightarrow\)NA=BC (2)
\(\Rightarrow\)NA//BC (góc N so le trong với góc C) (4)
Từ (1) và (2) có: M,A,N thẳng hàng
Từ (3) và (4) có: AM=AN
Mình giả bài này rồi nhé, định bào bạn vào TK mình lục nhưng thôi tại mình cung đang rảnh:vv
+Xét \(\Delta AEN\) và \(\Delta CEB:\)
AE=CE(gt)
EN=EB(gt)
\(\widehat{AEN}=\widehat{CEB}\) (2 góc đối đỉnh)
=> \(\Delta AEN=\Delta CEB\left(c-g-c\right)\)
=> AN=CB(2 cạnh t/ứ)(1)
+Xét \(\Delta AKN\) và \(\Delta BKC:\)
AK=BK(gt)
MK=CK(gt)
\(\widehat{AKM}=\widehat{BKC}\) (2 góc đối đỉnh)
=> \(\Delta AKM=\Delta BKC\left(c-g-c\right)\)
=> AM=BC(2 cạnh t/ứ)(2)
Từ (1) và (2) suy ra: AM=AN (3)
Ta có: \(\left\{{}\begin{matrix}\widehat{MAK}=\widehat{CBK}\left(\Delta MAK=\Delta CKB\right)\\\widehat{NAE}=\widehat{BCE}\left(\Delta NAE=\Delta BCE\right)\end{matrix}\right.\)
Mà: \(\widehat{CBK}+\widehat{BAC}+\widehat{BCE}=180^o\)
\(\widehat{MAK}+\widehat{BAC}+\widehat{NAE}=180^o\)
=> M, A, N thẳng hàng (4)
Từ (3) và (4) suy ra: A là trung điểm của MN