Cho tam giác ABC vuông tại A , biết AC = 10 cm ,góc C= 30 độ . hãy giải tam giác vuông ABC
Hì, giải cách lớp 7 nha, thanks nhìu. Lớp 7 hoặc dưới lớp 7 cũng được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(sinC=\frac{AB}{BC}=\frac{1}{2}\) nên \(BC=2AB=6\)
Suy ra , \(AC=\sqrt{BC^2-AB^2}=3\sqrt{3}\) và góc \(B=60^0\)
****
xét tam giác vuông ABC:
góc A+góc B+góc c=180 độ
90 độ+góc B+30 độ=180 độ
120 độ+góc B=180 độ
góc B=180-120
góc B=60 độ
tick nha
Ta co tinh chat canh doi dien voi goc 30do thi =1/2 canh huyen.o bai nay thi ta giai nhu sau.goi BC=a=>AB=a/2.ap dung PYTAGO =>(a/2)^2+100=a^2=>a= 11,55
ΔABC(góc A =900)
ta có:góc B+gócC=900 độ(hai góc phụ nhau)
suy ra góc B=900 trừ góc C
=900-300=600
suy ra gócB bằng 600
lại có :AB=AC.tan300=10.tan30o
\(\approx5,774\left(cm\right)\)
có BC=\(\dfrac{AC}{\cos30^0}\)
\(\approx11,547\)
Bài 1:
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay \(AB=\sqrt{13}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)
nên \(\widehat{B}=59^0\)
hay \(\widehat{C}=31^0\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Bổ đề: Cho tam giác ABC và tam giác DEF có ^BAC = ^EDF và \(\frac{AB}{DE}=\frac{AC}{DF}\). Khi đó ^ABC = ^DEF.
Trên cạnh DE,EF của \(\Delta\)DEF lần lượt lấy các điểm G,H sao cho DG=AB, DH=AC.
Dễ thấy \(\Delta\)ABC = \(\Delta\)DGH (c.g.c) => ^ABC = ^DGH, Ta cũng có:
\(\frac{AB}{DE}=\frac{AC}{DF}\) hay \(\frac{DG}{DE}=\frac{DH}{DF}\). Suy ra \(\frac{S_{DHG}}{S_{DHE}}=\frac{S_{DGH}}{S_{DGF}}\)=> SDHE = SDGF
Do đó SEGH = SFHG => Khoảng cách từ E,F đến GH bằng nhau => GH // EF => ^DGH = ^DEF
Vậy nên ^ABC = ^DEF.
Quay trở lại bài toán:
Dựng Q đối xứng với F qua trung điểm P của AC.Gọi I là giao của AF và DE, DE cắt AC tại J.
Ta dễ thấy \(\Delta\)CPF = \(\Delta\)APQ (c.g.c) => FC=QA => QA = FB. Đồng thời ^PCF = ^PAQ.
Lại có biến đổi góc: ^DAQ = 3600 - ^DAB - ^BAC - ^PAQ = 3600 - 600 - ^BAC - ^PCF
= 3000 - ^BAC - ^ACB - 300 = 2700 - ^BAC - ^ACB = ^ABC + 900 = ^ABC + ^FBC + ^DBA = ^DBF
Xét \(\Delta\)DQA và \(\Delta\)DFB: DA=DF, ^DAQ = ^DBF, QA=FB => \(\Delta\)DQA = \(\Delta\)DFB (c.g.c)
=> DQ = DF và ^ADQ = ^BDF. Từ đây ^QDF = ^ADB = 600. Do đó \(\Delta\)QFD đều.
Mà P là trung điểm QF nên \(\Delta\)DPF nửa đều. Qua ĐL Pytagore ta dễ có \(\frac{PD}{PF}=\sqrt{3}\)
Để ý \(\Delta\)EPA nửa đều => \(\frac{PE}{PA}=\sqrt{3}\)=> \(\frac{PD}{PF}=\frac{PE}{PA}\).
Kết hợp với ^APF = ^EPD (=900 + ^APD) suy ra ^PAF = ^PED (Theo bổ đề) hay ^JAI = ^JEP
Mà ^AJI = ^EJP (Đối đỉnh) nên ^AIJ = ^EPJ = 900. Như vậy AF vuông góc DE (đpcm).
chtt ai tích mình cái
tham khao cau hoi tuong tu nha bn