Các kích thước của hình hộp chữ nhật ABCD.A1B1C1D1 là DC = 5cm, CB = 4cm, BB1 = 3cm. Hỏi độ dài DC1 và CB1 là bao nhiêu xentimet?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DC1 ∈ mp( DCC1D1 ) với D C C 1 D 1 là hình chữ nhật nên Δ DCC1 vuông tại C.
Áp dụng định lý Py – ta – go vào Δ DCC1 vuông tại C ta được: DC12 = CC12 + CD2
Hay DC12 = 32 + 52 ⇔ DC12 = ( √ (34) )2 ⇔ DC1 = √ (34) ( cm )
CB1 ∈ ( BCC1B1 ) là hình chữ nhật nên Δ BCB1 vuông tại B.
Áp dụng định lí Py – ta – go vào Δ BCB1 vuông tại B ta được: CB12 = CB2 + BB12
Hay CB12 = 32 + 42 = 52 ⇔ CB1 = 5( cm )
Vậy DC1 = √ (34) ( cm ); CB1 = 5( cm )
Vì ABCD.A1B1C1D1 là hình hộp chữ nhật nên DCC1D1 và CBB1C1 là hình chữ nhật.
=> CC1 = BB1 = 3cm
Vì con kiến phải bò theo mặt của hình hộp từ Q đến P tức phải bò trên "một mặt phẳng". Ta vẽ hình khai triển của hình hộp chữ nhật và trải phẳng như sau:
Khi đó, P sẽ có hai vị trí là P1 và P2. Và quãng đường ngắn nhất sẽ là một trong hai đoạn thẳng QP1 hoặc QP2.
Chu vi đáy của hình hộp chữ nhật là :
(3+4)×2=14(cm)
Diện tích xung quanh là :
14×5=70(cm)
Thể tích hình hộp chữ nhật là :
3×4×5=60(cm)
Đ/S:....
Vì ABCD.A1B1C1D1 là hình hộp chữ nhật
⇒ DCC1D1 và CBB1C1 là hình chữ nhật.
⇒ CC1 = BB1 = 3cm
ΔDCC1 vuông tại C, áp dụng định lí Py-ta–go ta có:
DC12 = DC2 + CC12
ΔCBB1 vuông tại B, áp dụng định lí Py–ta-go ta có:
CB12= CB2 + BB12