Một hình chóp tứ giác đều có độ dài cạnh đáy là = 6cm, chiều cao là 4cm thì diện tích xung quanh là:
A. 128 ( c m 2 )
B. 96 ( c m 2 )
C. 120 ( c m 2 )
D.60 ( c m 2 )
E. 84 ( c m 2 )
Kết quả nào đúng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có
OC2 = SC2 - SO2 (Pytago)
= 52 - 42 = 9(cm)
=> OC = 3(cm)
=> AC = 6(cm)
AB2 + BC2 = AC2 (pytago)
2BC2 = AC2 (do AB = BC)
BC2 = AC2/2 = 36/2 = 18(cm)
BC = √18 = 3√2 (cm)
Gọi K là trung điểm của BC. Tam giác SBC cân tại S có SH là đường trung tuyến nên SH cũng là đường cao. Suy ra SH ⊥ BC
Do đó
\(a,S_{xp}=4.\dfrac{a+2a}{2}.a=6a^2\)
\(b,\)Vẽ một mặt bên. Ta có:\(AH=\dfrac{AB-A^'B^'}{2}=\dfrac{2a-a}{2}=\dfrac{a}{2}\)
Trong tamn giác vuông A'HA:
\(AA^'=\sqrt{a^2+\left(\dfrac{a}{2}\right)^2}=\sqrt{\dfrac{5a^2}{4}}\)
Từ đó tính tiếp sẽ ra chiều cao hình chóp
Đáp số :Độ dài cạnh bên là :\(\sqrt{\dfrac{5a^2}{4}}\)
Chiều cao chóp cụt :\(\sqrt{\dfrac{3a^2}{4}}\)
Kẻ trung đoạn của hình chóp.
Áp dụng định lí Pi-ta-go ta tính được trung đoạn của hình chóp bằng 5cm
Diện tích xung quanh của hình chóp là: S x q = 4.1/2 .6,5 = 60 ( c m 2 )
Vậy chọn đáp án D