K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

a) Tìm được x = 2,2

b) Tìm được x = 2073

c) Tìm được x = 4 hoặc x = -2

d) Điều kiện x≠-1 . Tìm được x = 0 hoặc x = 3

3 tháng 2 2021

Bài 1: Giải các phương trình sau:

a) 3(2,2-0,3x)=2,6 + (0,1x-4)

<=> 6.6 - 0.9x = 2,6 + 0,1x - 4

<=> - 0.9x - 0,1x = -6.6 -1,4

<=> -x = -8

<=> x = 8

Vậy x = 8

b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)

<=> 3,6 - x - 0,5 = x - 5,5 + x

<=> - x - 3,1 = -5,5

<=> - x = -2.4

<=> x = 2.4

Vậy  x = 2.4

12 tháng 1 2023

\(a,\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(b,\left(x-2\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

\(c,\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

\(d,\left(x+\dfrac{1}{2}\right)\left(4x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\4x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\4\left(x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

\(e,\left(x-4\right)\left(5x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\5x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

\(f,\left(2x-1\right)\left(3x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-2\end{matrix}\right.\)

12 tháng 1 2023

`a,(x-1)(x+2)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

`b,(x -2)(x -5)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

`c,(x +3)(x -5)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

`d,(x + 1/2)(4x + 4)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\4x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\4x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

`e,(x -4)(5x -10)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\5x-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

`f,(2x -1)(3x +6)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\3x=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-2\end{matrix}\right.\)

`g,(2,3x -6,9)(0,1x -2)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2,3x=6,9\\0,1x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=20\end{matrix}\right.\)

a) Ta có: \(2\left(3x+1\right)-4\left(5-2x\right)>2\left(4x-3\right)-6\)

\(\Leftrightarrow6x+2-20+8x>8x-6-6\)

\(\Leftrightarrow14x-18-8x+12>0\)

\(\Leftrightarrow6x-6>0\)

\(\Leftrightarrow6x>6\)

hay x>1

Vậy: S={x|x>1}

b) Ta có: \(9x^2-3\left(10x-1\right)< \left(3x-5\right)^2-21\)

\(\Leftrightarrow9x^2-30x+3< 9x^2-30x+25-21\)

\(\Leftrightarrow9x^2-30x+3-9x^2+30x-4< 0\)

\(\Leftrightarrow-1< 0\)(luôn đúng)

Vậy: S={x|\(x\in R\)}

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

16 tháng 9 2021

\(a,\) Sửa đề: \(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}=5\)

Ta thấy \(3x^2-12x+16=3\left(x-2\right)^2+4\ge4\Leftrightarrow\sqrt{3x^2-12x+16}\ge\sqrt{4}=2\)

\(y^2-4y+13=\left(y-2\right)^2+9\ge9\Leftrightarrow\sqrt{y^2-4y+13}\ge\sqrt{9}=3\)

Cộng vế theo vế 2 BĐT trên:

\(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}\ge2+3=5\)

Dấu \("="\Leftrightarrow x=y=2\)

Vậy pt có nghiệm \(\left(x;y\right)=\left(2;2\right)\)

 

16 tháng 9 2021

\(b,x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ \Leftrightarrow x+y+z+4-2\sqrt{x-2}-4\sqrt{y-3}-6\sqrt{z-5}=0\\ \Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5+6\sqrt{z-5}+9\right)=0\\ \Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\y-3=4\\z-5=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)

16 tháng 1 2021

a) \(x^2+2x=\left(x-2\right).3x\)

\(\Leftrightarrow x^2+2x=3x^2-6x\)

\(\Leftrightarrow x^2+2x-3x^2+6x=0\)

\(\Leftrightarrow-2x^2+8x=0\)

\(\Leftrightarrow-2x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy S = {0;4}

b) \(x^3+x^2-x-1=0\)

\(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\mp1\end{matrix}\right.\)

Vậy: S = {-1; 1}

c) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]=40\)

\(\Leftrightarrow\left(x^2+5x+x+5\right)\left(x^2+4x+2x+8\right)=40\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)

Đặt x2 + 6x + 5 = t

\(\Leftrightarrow t.\left(t+3\right)=40\)

\(\Leftrightarrow t^2+3t=40\)

\(\Leftrightarrow t^2+2.t.\dfrac{3}{2}+\dfrac{9}{4}=\dfrac{169}{4}\)

\(\Leftrightarrow\left(t+\dfrac{3}{2}\right)^2=\dfrac{169}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}t+\dfrac{3}{2}=\dfrac{13}{2}\\t+\dfrac{3}{2}=-\dfrac{13}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{13}{2}-\dfrac{3}{2}=\dfrac{10}{2}=5\\t=-\dfrac{13}{2}-\dfrac{3}{2}=-\dfrac{16}{2}=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x+5=5\\x^2+6x+5=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x=0\\x^2+6x+13=0\end{matrix}\right.\)

Mà: \(x^2+6x+13=x^2+2.x.3+9+4=\left(x+3\right)^2+4\ne0\)

=> x2 + 6x = 0

<=> x. (x + 6) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy S = {0; -6}

 

 

a) Ta có: \(x^2+2x=\left(x-2\right)\cdot3x\)

\(\Leftrightarrow x\left(x+2\right)-3x\left(x-2\right)=0\)

\(\Leftrightarrow x\left[\left(x+2\right)-3\left(x-2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2-3x+6\right)=0\)

\(\Leftrightarrow x\left(-2x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-2x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-2x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy: S={0;4}

b) Ta có: \(x^3+x^2-x-1=0\)

\(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(x-1\right)\cdot\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

Vậy: S={-1;1}

c) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)-40=0\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)

\(\Leftrightarrow\left(x^2+6x\right)^2+13\left(x^2+6x\right)+40-40=0\)

\(\Leftrightarrow\left(x^2+6x\right)^2+13\left(x^2+6x\right)=0\)

\(\Leftrightarrow\left(x^2+6x\right)\left(x^2+6x+13\right)=0\)

\(\Leftrightarrow x\left(x+6\right)\left(x^2+6x+13\right)=0\)

mà \(x^2+6x+13>0\forall x\)

nên \(x\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy: S={0;-6}

1: \(\Leftrightarrow\left(x-4\right)^2+14=-9\left(x-4\right)\)

\(\Leftrightarrow x^2-8x+16+14+9x-36=0\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(nhận)

2: \(\Leftrightarrow\left(8x+1\right)\left(2x-1\right)-2x\left(2x+1\right)-12x^2+9=0\)

\(\Leftrightarrow16x^2-8x+2x-1-4x^2-2x-12x^2+9=0\)

=>-8x+8=0

hay x=1(nhận)

c: \(\dfrac{1}{2\left(x-3\right)}-\dfrac{3x-5}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{2}\)

\(\Leftrightarrow x-1-2\left(3x-5\right)=\left(x-3\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-4x+3=x-1-6x+10=-5x+9\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(nhận)