K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

AH // BK (cùng ⊥ b) và AB // HK ⇒ tứ giác ABKH là hình bình hành

⇒ AH = BK = h

20 tháng 2 2022

a. xét tam giác vuông AHB và tam giác vuông AHC, có:

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

Vậy tam giác vuông AHB = tam giác vuông AHC ( ch.gn )

b. ta có: trong tam giác cân ABC đường cao cũng là đường trung tuyến

=> BH = BC :2 = 10 : 2 =5 cm

Áp dụng định lý pitago vào tam giác vuông ABH

\(AB^2=AH^2+BH^2\)

\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=\sqrt{144}=12cm\)

20 tháng 2 2022

giải hộ mik câu c vs d đuy 

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC(gt)

CF là đường cao ứng với cạnh AB(gt)

BE cắt CF tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

Suy ra: AH⊥BC

b) Xét tứ giác BHCK có 

HC//BK(gt)

BH//CK(gt)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà M là trung điểm của BC(gt)

nên M là trung điểm của HK

hay H,M,K thẳng hàng(đpcm)