Cho các tia OB, OC nằm trên cùng một nửa mặt phẳng có bờ chứa tia OA. Gọi OM là tia phân giác cua góc BOC. Tính góc AOM biết rằng:
a) Góc AOB= 100 độ, AOC= 60 độ
b) Góc AOB=m, góc AOC=n (m>n)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Góc BOC = AOB - AOC = 100o - 60o = 40o
MOC = MOB = BOC : 2 = 40o : 2 = 20o
AOM = AOC + COM = 60o + 20o = 80o
\(\widehat{BOC}=100^o-60^o=40^o\)
\(\widehat{BOM}=\widehat{MOC}=40^o:2=20^o\)
\(\widehat{AOM}=60^o+20^o=80^o\)
Giải: Do OC nằm giữa OA và OB (\(\widehat{AOC}< \widehat{AOB}\)) nên \(\widehat{AOC}+\widehat{COB}=\widehat{AOB}\)
=> \(\widehat{BOC}=\widehat{AOB}-\widehat{AOC}=100^0-60^0=40^0\)
Do OM là tia p/giác của góc BOC
nên : \(\widehat{BOM}=\widehat{MOC}=\frac{\widehat{BOC}}{2}=\frac{40^0}{2}=20^0\)
Do OC nằm giữa OA và OM nên \(\widehat{AOC}+\widehat{COM}=\widehat{AOM}\)
=> \(\widehat{AOM}=60^0+20^0=80^0\)
Vậy ...
Vẽ hình như vậy chuẩn chưa? Mà đề viết tên góc tên tia là chữ thường hết hả?
Ta có: \(\widehat{bOc}=\widehat{aOb}-\widehat{cOa}=100-60=40\)độ
Vì \(Om\)là phân giác \(\widehat{bOc}\Rightarrow\widehat{bOm}=\widehat{cOm}=\frac{\widehat{bOc}}{2}=\frac{40}{2}=20\)độ
Ta lại có: \(\widehat{aOm}=\widehat{cOm}+\widehat{cOa}=20+60=80\)độ
BOC = 100o - 60o = 40o
BOM = MOC = 40o: 2 = 20o
AOM = 60o + 20o= 80o
Hok tốt