Tìm x,y thuộc Z biết:
a) (x-2).(x.y-1)=5
b) Chứng minh rằng:
Nếu x là một số lẻ không chia hết cho 3 thì x^2 -1 chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?
Bài 1: Bài giải
Vì a lẻ => a^2 lẻ => a^ - 1 chẵn
=> M chia hết cho 2
Vì a không chia hết cho 3=> a^2 chia hết cho 3 dư 1
=> a^2 - 1 chia hết cho 3=> M chia hết cho 3
Vì( 2,3 ) =1 => M chia hết cho 2.3=6
=> Mchia hết cho 6 (Đpcm)
Bài 2: 20. (x+1)^2 + (y - 3) ^2 =64
Vì 20.( x+1 )^2 \(\ge\)0 , ( y - 3 )^2\(\ge\)0
=> 20 . ( x+1 ) ^2 \(\le\)64
=> (x+1 ) ^2 \(\le\)64/20 + 3,2
Vì (x+1 ) ^2 là số chính phương
\(\orbr{\begin{cases}\left(x+1\right)^2=0\\\left(x+1^2\right)=1\end{cases}}\)
TH1 (x+1)^2 =0 => (y - 3)^2 =64 = \(\left(\mp8^2\right)\)
=.> x= -1 \(\orbr{\begin{cases}y-3=8\Rightarrow y=11\\y-3=-8\Rightarrow y=-5\end{cases}}\)
TH2 (x+1)^2 = 1 \(\Rightarrow\)(y - 3)^2 =44 (vô lí)
Vậy (x,y )= (-1 , -11), (-1 , -5)
Chúc bạn học tốt
a.Vì x,y là số nguyên dương
=> 1003 và 2y cũng là số nguyên dương
Vì 2008 là số chẵn
mà 2y cũng là số chẵn
=> 1003x là số chẵn
Vì 1003 là số lẻ
mà 1003x là số chẵn
=> x là số chẵn
=> x chia hết cho 2 (đpcm)
Vậy ta có đpcm
Câu 2:
a: (x+3)(y+2)=1
\(\Leftrightarrow\left(x+3;y+2\right)\in\left\{\left(-1;-1\right);\left(1;1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(-4;-3\right);\left(-2;-3\right)\right\}\)
b: (2x-5)(y-6)=17
\(\Leftrightarrow\left(2x-5;y-6\right)\in\left\{\left(1;17\right);\left(17;1\right);\left(-1;-17\right);\left(-17;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(3;23\right);\left(11;7\right);\left(2;-11\right);\left(-6;5\right)\right\}\)
c: \(\left(x-1\right)\left(x+y\right)=33\)
\(\Leftrightarrow\left(x-1;x+y\right)\in\left\{\left(1;33\right);\left(33;1\right);\left(-1;-33\right);\left(-33;-1\right);\left(3;11\right);\left(11;3\right);\left(-11;-3\right);\left(-3;-11\right)\right\}\)
hay \(\Leftrightarrow\left(x;x+y\right)\in\left\{\left(2;33\right);\left(34;1\right);\left(0;-33\right);\left(-32;-1\right);\left(4;11\right);\left(12;3\right);\left(-10;-3\right);\left(-2;-11\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(2;31\right);\left(34;-33\right);\left(0;-33\right);\left(-32;31\right);\left(4;7\right);\left(12;-9\right);\left(-10;7\right);\left(-2;-9\right)\right\}\)
Cậu search mạng chứ gì
Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z)
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8.
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3.
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24.
Vậy đccm.
Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d).
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c.
Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có:
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99)
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3)
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96)
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20.
Vậy x chia hết cho 20 (đccm)
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100
=> 3x + x = 1 - 3^100
=> 4x = (1 - 3^100)
=> x = (1 - 3^100)/4
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm)
Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1.
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1.
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2.
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3
Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z)
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8.
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3.
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24.
Vậy đccm.
Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d).
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c.
Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có:
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99)
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3)
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96)
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20.
Vậy x chia hết cho 20 (đccm)
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100
=> 3x + x = 1 - 3^100
=> 4x = (1 - 3^100)
=> x = (1 - 3^100)/4
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm)
Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1.
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1.
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2.
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3
bài 1
Xét tổng : (ax - by) + (ay - bx) = ax - by + ay - bx = (ax + ay) - (by + bx) = a(x + y) - b(x + y) = (a - b)(x + y) chia hết cho x + y .
Vậy (ax - by) + (ay - bx) chia hết cho x + y (1)
Mà ax - by chia hết cho x + y (2)
Từ (1) và (2) suy ra ay - bx chia hết cho x + y (đpcm)
bài 2
a)
a) Gộp thành từng nhóm bốn số, ta được 25 nhóm, mỗi nhóm bằng - 4. Do đó A = - 100. Vì thế A chia hết cho 2, chia hết cho 5, không chia hết cho 3.
b)
b, A = 2^2*5^2
A có 9 ước tự nhiên và 18 ước nguyên
bài 3 bạn tự làm nhé dài lắm mình mỏi tay rồi
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ