Lớp 10A có 36 học sinh, trong đó mỗi học sinh đều biết chơi ít nhất một trong hai môn thể thao đá cầu hoặc cầu lông. Biết rằng lớp 10A có 25 học sinh biết chơi đá cầu, có 20 học sinh biết chơi cầu lông. Hỏi lớp 10A có bao nhiêu học sinh biết chơi cả hai môn đá cầu và cầu lông?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Gọi x là số học sinh biết chơi cả hai môn đá cầu và cầu lông. }\)
\(\text{Theo đề, ta có: }\)
\(\text{+Số học sinh chỉ biết chơi mỗi đá cầu là: }25-x\)
\(\text{+Số học sinh chỉ biết chơi mỗi cầu lông là: }20-x\)
\(\text{Vậy, số học sinh biết chơi cả hai môn đá cầu và cầu lông là:
}\)
\(25-x+20-x+x=36\Leftrightarrow x=9\left(HS\right)\)
Số học sinh biết chơi cả đá cầu và cầu lông là: \(25+20-36=9\left(hs\right)\)
Kí hiệu A và B lần lượt là tập các học sinh đăng kí môn bóng đá và cầu lông.
Ta có A ∪ B = 40. Theo quy tắc cộng mở rộng ta có:
n (A ∩ B) = n(A) + n(B) − n(A ∪ B) = 30 + 25 - 40 = 15
Vậy có 15 em đăng kí chơi hai môn thể thao.
-lớp 6A có 25 em biết chơi đá cầu
lớp 6A có 30 em biết chơi nhảy dây
lớp 6A có:
25+30-15=40(em)
ĐS:...
Gọi A là tập hợp các học sinh biết chơi đá cầu và B là tập hợp các học sinh biết chơi cầu lông.Kí hiệu n(A), n(B) các tập hợp A, B. Khi đó:
+)n(A∩B) là số học sinh Bích cho cả hai môn thể thao đá cầu vượt cầu lông
+)n(A ∪ B) là số học sinh biết chơi ít nhất một trong hai môn
Mặt khác từ biểu đồ ven ở trên sẽ thấy
n(A∪B) = n(A)+ n(B)- n(A∩B)
=>n (A∩B)=9
Vậy lúc mới a có 9 học sinh biết chơi cả 2 đá cầu và cầu lông