Tìm trên đồ thị hàm số y = − x 3 + x 2 + 3x − 4 hai điểm đối xứng nhau qua gốc tọa độ.
A. (1; −1) và (−1; −1).
B. (2; −2) và (−2; 2).
C. (3; −13) và (−3; 23).
D. Không tồn tại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp: Tham số hóa điểm thuộc đồ thị hàm số (C).
Lấy điểm đối xứng với điểm đó qua O (Điểm (a;) đối xứng với điểm (-a;-b)qua gốc tọa độ O).
Cho điểm đối xứng vừa xác định thuộc (C).
Cách giải:
Chú ý và sai lầm : Có thể thử trực tiếp từng đáp án và suy ra kết quả.
Đáp án D
Gọi A x ; y , B − x ; − y là 2 điểm đối xứng qua gốc tọa độ
Do 2 điểm thuộc đồ thị nên ta có:
y = x 3 + 2 m − 1 x 2 + m − 1 x + m − 2 − y = − x 3 + 2 m − 1 − x 2 − m − 1 x + m − 2
Cộng vế theo vế ta được:
2 m − 1 x 2 + m − 2 = 0 ⇔ x 2 = − m + 2 2 m − 1
Tồn tại 2 điểm phân biệt A, B khi x 2 > 0 , tức là − m + 2 2 m − 1 > 0 ⇔ 1 2 < m < 2
a:
b: Khi x=2 thì y=1/2*2^2=2
=>A(2;2)
Khi x=2 thì y=2^2=4
=>B(2;4)
c: Tọa độ A' là:
\(\left\{{}\begin{matrix}x_{A'}=-x_A=-2\\y_{A'}=y_A=2\end{matrix}\right.\)
Vì f(-2)=1/2*(-2)^2=2
nên A' thuộc (P1)
Tọa độ B' là:
\(\left\{{}\begin{matrix}x_{B'}=-x_B=-2\\y_{B'}=y_B=4\end{matrix}\right.\)
Vì f1(-2)=(-2)^2=4
nên B' thuộc y=x^2
Đáp án A
Gọi
là hai điểm trên (C) đối xứng nhau qua gốc tọa độ, ta có
Giả sử A ( x 1 ; - x 1 3 + 3 x 1 + 2 ) ; B ( x 2 ; - x 2 3 + 3 x 2 + 2 )
Do A, B đối xứng nhau qua điểm I(-1;3) nên
x 1 + x 2 = - 2 - x 1 3 + 3 x 1 + 2 - x 2 3 + 3 x 2 + 2 = 6 ⇔ { x 1 + x 2 = - 2 - x 1 + x 2 3 + 3 x 1 x 2 ( x 1 + x 2 ) + 3 ( x 1 + x 2 ) + 4 = 6 ⇔ x 1 + x 2 = - 2 - ( - 2 ) 3 + 3 x 1 x 2 . ( - 2 ) + 3 . ( - 2 ) + 4 = 6 ⇔ x 1 + x 2 = - 2 x 1 x 2 = 0 ⇔ [ x 1 = 0 x 2 = - 2 x 1 = - 2 x 2 = 0 ⇒ A ( 0 ; 2 )
hoặc A(-2;4)
Vậy, tọa độ điểm A có thể là A(0;2)
Chọn đáp án D.
Đáp án B