a. Tìm số TN nhỏ nhất có 4 chữ số giống nhau ,biết rằng số đó có đúng 3 ước đều là số nguyên tố
b DÙNG 3 CHỮ SỐ 1;2;3 HÃY VIẾT CÁC SỐ TN CÓ 3 CHỮ SỐ MÀ CÁC CHỮ SỐ KHÁC NHAU . CHỨNG TỎ RẰNG TẤT CẢ CÁC SỐ ĐÓ ĐỀU LÀ HỢP SỐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các số nguyên tố lớn hơn 5 sẽ có tận cùng là: 1, 3, 7.
Như vậy trong 5 số nguyên tố lớn hơn 5 sẽ có ít nhất hai có cùng chữ số tận cùng, suy ra hiệu hai số này chia hết cho 10.
b) Gọi số cần tìm là \(\overline{ab}\) (a,b là số nguyên tố).
Theo bài ra ta có: \(\overline{ab}.a.b=\overline{aaa}\) \(\Leftrightarrow\overline{ab}.a.b=b.111\) \(\Leftrightarrow\overline{ab}.a=3.37\).
Suy ra \(\hept{\begin{cases}a=3\\b=7\end{cases}}\).
Mình lm bài 3 nhá!!!
Bài 3:Chứng tỏ rằng:
a) n + 1 và n + 2 nguyên tố cùng nhau
Gọi UCLN ( n+1; n+2 ) = d
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)
\(\Rightarrow n+2-n-1⋮d\Rightarrow1⋮d\)
\(\Rightarrow d=1\Rightarrow UCLN\left(n+2;+1\right)=1\)
Vậy n + 1 và n +2 là hai số nguyên tố cùng nhau
b) 2n + 3 và 3n + 4
Gọi UCLN ( 2n+3; 3n+4 ) = d
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+4\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d}\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d=1\Rightarrow UCLN\left(2n+3;3n+4\right)⋮d\)
Vậy 2n + 3 và 3n + 4 là hai số nguyên tố cùng nhau.
gọi số càn tìm là ab [a,b là số nguyên tố]
theo bài ra ta có : ab . a . b = aaa \(\Leftrightarrow\)ab.a.b = b . 111 \(\Leftrightarrow\)ab . a = 3,37
suy ra \(\hept{\begin{cases}a=3\\b=7\end{cases}}\)