K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

10 tháng 8 2018

Đáp án D

23 tháng 7 2017

Đáp án : D.

16 tháng 8 2018

Đáp án: D.

y' = 3 x 2  - 6(m - 1)x - 3(m + 1)

y' = 0 ⇔  x 2  - 2(m - 1)x - m - 1 = 0

Δ' = ( m - 1 ) 2  + m + 1 = m 2  - m + 2 ≥ 0

Tam thức m 2  - m + 2 luôn dương với mọi m ∈ R vì δ = 1 - 8 < 0 và a = 1 > 0 cho nên phương y' = 0 luôn có hai nghiệm phân biệt. Suy ra hàm số luôn có cực trị với mọi giá trị m ∈ R.

8 tháng 6 2017

Đáp án: D.

y' = 3 x 2 - 6(m - 1)x - 3(m + 1)

y' = 0 ⇔  x 2  - 2(m - 1)x - m - 1 = 0

∆ ' = m - 1 2  + m + 1 =  m 2 - m + 2 ≥ 0

Tam thức  m 2  - m + 2 luôn dương với mọi m R vì δ = 1 - 8 < 0 và a = 1 > 0 cho nên phương y' = 0 luôn có hai nghiệm phân biệt. Suy ra hàm số luôn có cực trị với mọi giá trị m ∈ R.

12 tháng 3 2021

Có dấu = nha, mình nhầm

12 tháng 3 2021

NV
6 tháng 3 2021

a.

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)

\(\Leftrightarrow-5m-4< 0\)

\(\Leftrightarrow m>-\dfrac{4}{5}\)

b. 

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)

\(\Leftrightarrow-3m+7\le0\)

\(\Rightarrow m\ge\dfrac{7}{3}\)

c.

\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)

\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)

8 tháng 2 2019

Đáp án: A.

- Nếu m = 0 thì y = -2x - 2, hàm số không có cực trị.

- Nếu m ≠ 0: Hàm số không có cực trị khi và chỉ khi phương trình y' = m x 2  + 2mx + 2(m - 1) = 0 không có hai nghiệm phân biệt. Muốn vậy, phải có

Δ' = m 2  - 2m(m - 1) = - m 2  + 2m ≤ 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

13 tháng 7 2019

Đáp án: A.

- Nếu m = 0 thì y = -2x - 2, hàm số không có cực trị.

- Nếu m ≠ 0: Hàm số không có cực trị khi và chỉ khi phương trình y' = m x 2  + 2mx + 2(m - 1) = 0 không có hai nghiệm phân biệt. Muốn vậy, phải có

∆ ' =  m 2  - 2m(m - 1) = - m 2  + 2m ≤ 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

2 tháng 9 2018

Đáp án: B.

Hàm số đã cho có cực trị khi và chỉ khi

y' = 3 x 2  - 6(m - 1)x - 3(m + 3) = 0 có 2 nghiệm phân biệt

⇔ ∆ ' = m - 1 2  + (m + 3) =  m 2  - m + 4 > 0

Ta thấy tam thức  ∆ ' =  m 2  - m + 4 luôn dương với mọi m vì

δ = 1 - 16 = -15 < 0, a = 1 > 0

Vậy hàm số đã cho luôn có cực trị mới mọi m  ∈  R

6 tháng 8 2019

Đáp án: B.

Hàm số đã cho có cực trị khi và chỉ khi

y' = 3 x 2  - 6(m - 1)x - 3(m + 3) = 0 có 2 nghiệm phân biệt

⇔ Δ' = ( m - 1 ) 2  + (m + 3) = m 2  - m + 4 > 0

Ta thấy tam thức Δ' =  m 2  - m + 4 luôn dương với mọi m vì

δ = 1 - 16 = -15 < 0, a = 1 > 0

Vậy hàm số đã cho luôn có cực trị mới mọi m ∈ R