K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

a, b là 2 số tự nhiên liên tiếp nên b=a+1. Thay vào p ta có:

p = a2+(a+1)2+a2*(a+1)2

p= a2+a2+2a+1+a2(a2+2a+1)

p=a4+ 2a3+3a2+2a+1

p=(a4+2a3+a) +2 (a2+a) +1

p=(a2+a)2+2 (a2+a) +1

p=[(a2+a) + 1]2

Vậy p là số chính phương.

Nếu a lẻ thì (a2+a) chẵn => p lẻ

Nếu a chẵn thì (a2+a) chẵn => p lẻ

Vậy p là số chính phương lẻ.

27 tháng 9 2018

ko ai làm được à???huhu

2 tháng 7 2021

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

3 tháng 6 2018

b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1

cho b=a+1

\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)

\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)

\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)

\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)

vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)

4 tháng 6 2018

Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k!  ^_^  *_*

22 tháng 1 2016

Vì a,b là 2 số tự nhiên liên tiếp nên b=a+1

Thay b=a+1 và c=ab vào P=

a^2 + (a+1)^2+a^2.b^2  = a^2+a^2+2a+1+a^2.(a+1)^2=

a^4+2a^3+3a^2+2a+1 = (a+1)(a^3+a^2+2a)+1= (a+1)((a^2)(a+1)+2a)+1=a^2(a+1)^2+2a.(a+1)+1=((a+1).a+1)^2 Hằng đẳng thức

vi a.(a+1) chẵn nên a.(a+1)+1 lẻ suy ra P là số chính phương lẻ

7 tháng 10 2018

Khoảng cách giữa 2 số lẻ liên tiếp là 2

Số lẻ đầu tiên là 1 thì số lẻ thứ n là:

             \(1+\left(n-1\right).2=2n-1\)

Khi đó: tổng n STN lẻ liên tiếp kể từ 1 là:

      \(1+3+5+...+\left(2n-1\right)\)

\(=\left(1+2n-1\right).n:2\)

\(=2n^2:2=n^2\)

Vậy tổng của n STN lẻ liên tiếp là số chính phương.

Chúc em học tốt.

29 tháng 3 2016

a, b là 2 số tự nhiên liên tiếp nên a hoặc b sẽ là một số chẵn hoặc một số lẻ. => a=2k, b=2k+1, c=2k(2k+1)

P=a^2+b^2+c^2

P=(2k)^2+(2k+1)^2+[(2k)(2k+1)]^2

P=4k^2+4k^2+1+2.2k+4k^2(2k+1)^2

P=4k^2+4k^2+4k+4k^2.(4k^2+1+4k)+1 

mà 4k^2+4k^2+4k+4k^2.(4k^2+1+4k) chia hết cho 2

=> P ko chia hết cho 2.

P là số chính fuong lẻ

28 tháng 8 2021

- Gọi E là giao điểm của AC và BD

△ABE có trung tuyến BE

\(\Rightarrow BE^2=\dfrac{2\left(AB^2+BC^2\right)-AC^2}{4}\)

\(\Rightarrow4.BE^2=2\left(AB^2+BC^2\right)-AC^2\)

Mà O là trung điểm BD \(\Rightarrow BD=2.BE\Rightarrow BD^2=4.BE^2\)

\(\Rightarrow BD^2=2\left(AB^2+BC^2\right)-AC^2\)

\(\Rightarrow BD^2+AC^2=2\left(AB^2+BC^2\right)\)

Vậy: \(AC^2+BD^2=2\left(a^2+b^2\right)\left(đpcm\right)\)

(Hình như đây là Toán 10?)

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:
Kẻ đường cao $BH, DT$ của hình bình hành

Dễ chứng minh $\triangle ADT =\triangle BCH$ (ch-gn)

$\Rightarrow DT=CH; AT=BH$

Áp dụng định lý Pitago:

$AC^2+BD^2=AT^2+TC^2+BH^2+DH^2$

$=(AT^2+BH^2)+TC^2+DH^2)$

$=2AT^2+(DC-DT)^2+(DC+CH)^2$

$=2(AD^2-DT^2)+(DC-DT)^2+(DC-DT)^2$

$=2(b^2-DT^2)+(a-DT)^2+(a+DT)^2$

$=2(b^2+a^2)$

Ta có đpcm.