K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

Đặt \(x+y=a\Leftrightarrow a-4=x+y-4\)

\(x^3+y^3-6\left(x^2+y^2\right)+13\left(x+y\right)-20=0\\ \Leftrightarrow\left(x+y\right)^3-6\left(x+y\right)^2+13\left(x+y\right)-20-3xy\left(x+y\right)+12xy=0\\ \Leftrightarrow a^3-6a^2+13a-20-3xy\left(x+y-4\right)=0\\ \Leftrightarrow a^3-4a^2-2a^2+8a+5a-20-3xy\left(a-4\right)=0\\ \Leftrightarrow\left(a-4\right)\left(a^2-2a+5\right)-3xy\left(a-4\right)=0\\ \Leftrightarrow\left(a-4\right)\left(a^2-2a+5-3xy\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=4\\a^2-2a+5-3xy=0\left(vô.n_0\right)\end{matrix}\right.\\ \Leftrightarrow x+y=4\)

\(\Leftrightarrow A=x^3+y^3+12xy=\left(x+y\right)^3-3xy\left(x+y\right)+12xy\\ A=4^3-3xy\left(x+y-4\right)=64-0=64\)

21 tháng 3 2020

\(A=x^3+y^3+12xy\) nha

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

NV
20 tháng 8 2021

\(\Leftrightarrow6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+20=\dfrac{5\left(x+y\right)\left(xy+3\right)}{xy}\ge\dfrac{5\left(x+y\right)2\sqrt{3xy}}{xy}=10\sqrt{3}\left(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}\right)\)

Đặt \(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=t\ge2\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\)

\(\Rightarrow6\left(t^2-2\right)+20\ge10\sqrt{3}t\)

\(\Rightarrow3t^2-5\sqrt{3}t+4\ge0\)

\(\Rightarrow\left(\sqrt{3}t-1\right)\left(\sqrt{3}t-4\right)\ge0\)

Do \(t\ge2\Rightarrow\sqrt{3}t-1>0\)

\(\Rightarrow\sqrt{3}t-4\ge0\Rightarrow t\ge\dfrac{4}{\sqrt{3}}\)

\(\Rightarrow t^2\ge\dfrac{16}{3}\Rightarrow t^2-2\ge\dfrac{10}{3}\)

\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}\ge\dfrac{10}{3}\) (do \(\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\))

Vậy \(A_{min}=\dfrac{10}{3}\) khi \(\left(x;y\right)=\left(1;3\right);\left(3;1\right)\)