M=3+\(3^2+3^3+3^4+...+3^{100}
\)
M có chia hết cho 4,cho 12 không
anh em hộ tôi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=(3+3^2)+(3^3+3^4)+....+(3^99+3^100)
M=3(1+3)+3^3(1+3)+....+3^99(1+3)
M=3.4+3^3.4+....+3^99.4
M=4(3+3^3+....+3^99)
SUY RA M CHI HẾT CHO 4
NHỚ TÍCH MK NHA
M=3+32+33+34+...+3100
3M=3(3+32+33+34+...+3100)
3M=32+33+34+35+...+3101
3M-M=2M=32+33+34+35+...+3101-(3+32+33+34+...+3100)
2M=32+33+34+35+...+3101-3-32-33-34-...-3100
2M=3101-3
M=\(\frac{3^{101}-3}{2}\)
\(M=3+3^2+3^3+...+3^{100}\)
\(M=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(M=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(M=4.\left(3+3^3+...+3^{99}\right)\)
\(\Rightarrow M⋮4\)
mà \(M⋮3\)
\(\Rightarrow M⋮12\)
Đáp án M có chia hết cho 4 và M có chia cho 12
a) ta có m = 3 + 32+ 33+...+3100
3M=3^2+3^3+3^4+....+3^101
2M=3^101-3
=>2M+3=3^101
2M+6=3^101+3
M+3=(3^101+3)/2
Tớ nghĩ có lẽ bạn chép sai đề
a) Ta có : M = 3 + 32 + 33 + ... + 3100
=> M = (3 + 32) + (33 + 34) + ... + (399 + 3100)
=> M = 12 + 32(3 + 32) + ... + 398(3 + 32)
=> M = 12 + 32.12 + ... + 398.12
=> M = 12(1 + 32 + ... + 398) \(⋮\)12
Do 12 = 3 . 4 \(⋮\)4 => M \(⋮\)4
b) Ta có: 2m + 3 = 3
=> 2m = 3 - 3
=> 2m = 0
=> m = 0 : 2
=> m = 0
Ta có: \(M=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow M=\left(3+3^2\right)+\left(3^3+3^4\right)+.....+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+.....+3^{99}\left(1+3\right)\)
\(=4\left(3+3^3+....+3^{99}\right)⋮4\)
Vậy \(M⋮4\)
Chứng minh \(M⋮12\) : Tương tự
Trả lời
M=3+3^2+3^3+...+3^100
=(3+3^2)+(3^3+3^4)+...+(3^99+3^100)
=12+3^2.(3^2+3)+...+3^98(3+3^2)
=12+3^2.12+...+3^98.12
=12.(1+3^2+...+3^98) : 12 (: chia hết nha!)
Do 12=3.4:4=>M: 4
a)\(M=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)=4\left(3+3^3+...+3^{99}\right)⋮4\)
\(M=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{98}\left(3+3^2\right)=12\left(1+3^2+...+3^{98}\right)⋮12\)
b)\(M=3+3^2+3^3+3^4+...+3^{100}\)
\(=>3M=3^2+3^3+3^4+3^5+...+3^{101}\)
\(=>3M-M=2M=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(=>2M=3^{101}-3\)
Mà \(2M+3=3^n\)nên \(3^{101}-3+3=3^n=>3^{101}=3^n=>n=101\)
Vậy n = 101
A = 3 + 32 + 33 + 34 + ... 3100
A = 31 + 32 + 33 + 34 + ...... 3100
A = ( 3100 - 31 ) : 11
A = 398 - ( 32 + 34 )
A = 392
A không chia hết cho 12 vì 12 là thừa số nguyên tố chẵn
+) \(A=3+3^2+3^3+3^4+...+3^{100}\)
\(A=3\left(1+3\right)+3^3\left(1+3\right)+....+3^{99}\left(1+3\right)\)
\(\Rightarrow A⋮4\)
+) \(A=3+3^2+3^3+3^4+...+3^{100}\)
\(A=3\left(1+3+3^2\right)+.....\)( tương tự nhóm liên tiếp 3 số )
\(A=3.13+......⋮13\)
\(\Rightarrow A⋮̸12\)
a) \(x+1+x+2+x+3+x+\frac{1}{4}+x+100=7450\)
\(\Leftrightarrow5x+\frac{425}{4}=7540\)
\(\Leftrightarrow x=\frac{5947}{4}\)
Vậy...
b) \(M=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{99}\right)⋮4\)
Ta lại có:
\(M=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=\left(3+3^3\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=\left(3+3^2\right)+3\left(3+3^2\right)+...+3^{98}\left(3+3^2\right)\)
\(=12\left(1+3+...+3^{98}\right)⋮12\)
Chúc bạn học tốt@@
\(M=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)=3.4+3^3.4+...+3^{99}.4=4\left(3+3^3+...+3^{99}\right)⋮4\)
\(M=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{98}\left(3+3^2\right)=12+3^2.12+...+3^{98}.12=12\left(1+3^2+...+3^{98}\right)⋮12\)