K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

Gọi D, M là giao điểm của AI, AG với BC.

Vì AD là tia phân giác góc B A C ^  nên B D A B = D C A C  (t/c)

⇒ B D 12 = D C 18 = B D + D C 12 + 18 = 15 30 = 1 2

=> BD = 12. 1 2  = 6, DC =18. 1 2  = 9

Lại có: BI là tia phân giác A B D ^ nên A I I D = A B B D = 12 6 = 2  (tính chất)

=> I D A D = M G M A = 1 3  hay D đúng

Mà AG = 2GM (vì G là trọng tâm)

Nên A I I D = A G G M = 2  hay B đúng

Theo định lí đảo của định lí Talet ta có:

IG // DM => IG // BC hay A đúng

Chỉ có C sai

Đáp án: C

13 tháng 2 2022

TK

Gọi D, M là giao điểm của AI, AG với BC.

Trắc nghiệm Tính chất đường phân giác của tam giác có đáp án

Theo định lí đảo của định lí Talet ta có:

IG // DM ⇒ IG // BC hay A đúng

Chỉ có C sai

Đáp án cần chọn là: C

Chọn C

26 tháng 12 2019

Do M là trung điểm BC nên MB = 1 2 BC = 1 2 .15 = 7,5 cm

Mà BD = 6cm nên DM = 7,5 cm – 6cm = 1,5 cm

Do IG // DM nên I G D M = A G A M = 2 3  => IG = 2 3 DM = 1 3 .1,5 = 1 cm

Đáp án: A

10 tháng 9 2015

Bài hay quá!

Điểm cách đều tam giác ở đây chắc là tâm đường tròn nội tiếp?

Gọi điểm tiếp xúc của đường tròn nội tiếp (O) với hai cạnh BC,AB là D,F. Gọi M là trung điểm của BC và phân giác AO cắt đường tròn ngoại tiếp tam giác ABC ở K.

Ta kí hiệu \(a,b,c\) là độ dài ba cạnh BC,CA,AB như thông thường. Ta có ngay \(b+c=2a,\)(do giả thiết). Mặt khác \(AF=\frac{b+c-a}{2}=\frac{a}{2}=BM\).  Mặt khác \(\angle MBK=\frac{\angle A}{2}=\angle FAO\). Suy ra \(\Delta FAO=\Delta MBK\) (cạnh huyền, cạnh góc vuông). Do vậy \(\text{AO=BK, FO=KM}\), suy ra \(OD=KM\). . Gọi \(T=AK\cap BC\) suy ra \(T\) là trung điểm \(KO\)

Cuối cùng để ý rằng \(\angle OBK=\frac{B}{2}+\frac{A}{2}=\angle BOK\to\Delta OBK\) cân ở \(K\), do đó \(KB=KO=KA\to AO=2OT.\) Vậy ta có \(\frac{AO}{OT}=2=\frac{AG}{GN}\to\) theo định lý Ta-let đảo thì OG song song BC.
 

10 tháng 9 2015

Bài này hay đến nỗi nên thơ, hay đến nỗi nỗi làm rung động các nhà bác học  toán lừng danh trên thế giới