Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm, đường cao AH, đường phân giác BD. Gọi I là giao điểm của AH và BD. Chọn khẳng định đúng.
A. AB.BI = BD.HB
B. A B . B I = A I 2
C. A B . B I = B D 2
D. A B . B I = H I 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có
BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)(Định lí tia phân giác của tam giác)
\(\Leftrightarrow\dfrac{AD}{6}=\dfrac{DC}{10}\)
mà AD+DC=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{DC}{10}=\dfrac{AD+DC}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)
Vậy: AD=3cm; DC=5cm
b) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(Gt)
nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\)(Tính chất đường phân giác của tam giác)(1)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\)(Tính chất đường phân giác của tam giác)(2)
Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔABH∼ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)(đpcm)
Dành cho anh em nào cần phần C nha
Xét ∆HIB và ∆AID có:
Góc IHB= góc IAD
Góc I( đối đỉnh)
Suy ra ∆HIB đồng dạng vs ∆ AID
Suy ra góc HBI = ADI
Mà tâm giác BIH vuông tại H nên Góc HBI = BIH
Mà hai góc I đối đỉnh nên góc HBI = AID
Mà góc HBI = ADI
Nên góc ADI = góc AID
Suy ra tâm giác AID cân (đpcm) (hơi dài nhỉ nhưng có cách ngắn nhưng nó sẽ không chi tiết mong ae thông cảm )
a, Xét tam giác ABC vuông tại A, có AH là đường cao
Áp dụng định lí Py ta go ta có :
\(BC^2=AB^2+AC^2=36+64\)
\(\Rightarrow BC^2=100\Rightarrow BC=10\)cm
Vì BD là phân giác ^ABC nên
\(\frac{AB}{BC}=\frac{AD}{DC}\)(1) mà \(AD=AC-DC=8-DC\)
hay \(\frac{6}{10}=\frac{8-DC}{DC}\Rightarrow6DC=80-10DC\)
\(\Leftrightarrow16DC=80\Leftrightarrow DC=5\)cm
\(\Rightarrow AD=AC-DC=8-5=3\)cm
b, Xét tam giác BHA và tam giác BAC ta có
^BHA = ^A = 900
^B _ chung
Vậy tam giác BHA ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{BH}{BA}=\frac{AB}{BC}\) ( tỉ số đồng dạng ) (2)
Từ (1) và (2) \(\Rightarrow\frac{BH}{BA}=\frac{AD}{DC}\)(3)
xem lại đề đi nếu như thành \(\frac{IH}{AD}=\frac{IA}{DC}\)
sao lại có tam giác IHA được ? hay còn cách nào khác ko ?
+ Áp dụng định lý Pitago trong tam giác vuông ABC ta có:
A B 2 + A C 2 = B C 2 ⇔ 6 2 + 8 2 = B C 2 ⇔ B C 2 = 100 ⇒ B C = 10 c m
+ Vì BD là đường phân giác của tam giác ABC nên áp dụng tính chất đường phân giác của tam giác, ta có:
B A A D = B C C D ⇔ B A A D = B C C A − A D ⇔ 6 A D = 10 8 − A D
=> AD = 3cm => DC = AC - AD = 8 - 3 = 5cm
Đáp án: B
a) Xét \(\Delta BAH\) và \(\Delta BCA\)có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
suy ra: \(\Delta BAH~\Delta BCA\) (g.g)
\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\)
\(\Rightarrow\)\(AB^2=BH.BC\)
c) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC=10\)
\(\Delta ABC\)có AK là phân giác
\(\Rightarrow\)\(\frac{KB}{AB}=\frac{KC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{KB}{AB}=\frac{KC}{AC}=\frac{KB+KC}{AB+AC}=\frac{5}{7}\)
suy ra: \(KB=\frac{30}{7}\) \(KC=\frac{40}{7}\)
c) Xét \(\Delta ABD\)và \(\Delta HBI\)có:
\(\widehat{ABD}=\widehat{HBI}\) (gt)
\(\widehat{BAD}=\widehat{BHI}=90^0\)
suy ra: \(\Delta ABD~\Delta HBI\)
\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BD}{BI}\)
\(\Rightarrow\)\(AB.BI=BD.HB\)
d) \(S_{ABC}=\frac{1}{2}.AB.AC=24\)
\(\Delta ABH~\Delta CBA\) (câu a)
\(\Rightarrow\)\(\frac{S_{ABH}}{S_{CBA}}=\left(\frac{AB}{BC}\right)^2=\frac{9}{16}\)
\(\Rightarrow\)\(S_{ABH}=\frac{9}{16}.S_{ABC}=13,5\)
â) chứng minh AB2 = BH . BC
Xét : \(\Delta ABHva\Delta ABC,co\):
\(\widehat{B}\) là góc chung
\(\widehat{A}=\widehat{H}=90^o\)
Do do : \(\Delta ABH~\Delta ABC\left(g-g\right)\)
=> \(\frac{AB}{HB}=\frac{BC}{AB}\) (tỉ lệ tương ứng của 2 tam giác đồng dạng )
=> AB . AB = BH . BC
=> AB2 = BH . BC
b)
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔBAC có BD là phan giác
=>AD/AB=DC/BC
=>AD/3=DC/5=8/8=1
=>AD=3cm; DC=5cm
b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>AD/HI=BA/BH
=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID
=>ΔAID cân tại A
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=8/8=1
=>AD=3cm; CD=5cm
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
góc CBD=góc ABD
=>góc AID=góc ADI
=>ΔAID cân tại A
a, Xét ΔABC và ΔHBA có :
\(\widehat{A}=\widehat{AHB}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)
b, Xét ΔABC vuông tại A, theo định lý Pi-ta-go ta có :
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có : \(\Delta ABC\sim\Delta HBA\left(cmt\right)\)
\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}\)
hay \(\dfrac{8}{AH}=\dfrac{10}{6}\)
\(\Rightarrow AH=\dfrac{8.6}{10}=4,8\left(cm\right)\)
c, Xét ΔAHB và ΔCHA có :
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\widehat{BAH}=\widehat{C}\left(phụ\cdot với\cdot\widehat{B}\right)\)
\(\Rightarrow\Delta AHB\sim\Delta CHA\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{HC}=\dfrac{BH}{AH}\)
\(\Rightarrow AH^2=HC.BH\)
d, Xét ΔABD và ΔHBI có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{ABD}=\widehat{HBI}\left(phân\cdot giác\cdot BD\right)\)
\(\Rightarrow\Delta ABD\sim\Delta HBI\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BD}{BI}\)
\(\Rightarrow AB.BI=BD.HB\left(đpcm\right)\)
Xét 2 tam giác vuông ABD và HBI có:
A B D ^ = H B I ^ (BD là tia phân giác của góc B)
=> ΔABD ~ ΔHBI (g - g)
⇒ A B H B = B D B I ⇔ AB.BI = BD.HB
Đáp án: A