Cho hai số tự nhiên biết rằng hai lần số thứ nhất hơn ba lần số thứ hai là 9 và hiệu các bình phương của chúng bằng 119. Tìm số lớn hơn.
A. 12
B. 13
C. 32
D. 33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi số thứ nhất là a; a ∈ N, số thứ hai là b; b ∈ N Vì hai lần số thứ nhất hơn ba lần số thứ hai là 9 nên ta có:
Vì hiệu các bình phương của chúng bằng 119 nên ta có phương trình:
Vậy số lớn hơn là 12.
Đáp án A
Gọi số thứ nhất là a; a ∈ N , số thứ hai là b; b ∈ N
Vì hai lần số thứ nhất hơn ba lần số thứ hai là 9 nên ta có:
Vì hiệu các bình phương của chúng bằng 119 nên ta có phương trình:
a 2 – b 2 = 119 hay
a 2 − 2 a − 9 3 2 = 119 ⇔ 9 a 2 − 4 a 2 − 36 a + 81 = 119.9 ⇔ 5 a 2 + 36 a − 1152 = 0 T a c ó : Δ ' = 18 2 − 5. − 1152 = 6084 ⇒ Δ ' = 78
Nên phương trình có hai nghiệm
a 1 = − 18 − 78 5 = − 96 5 ( l o ạ i ) ; a 2 = − 18 + 78 5 = 12 ( n h ậ n )
⇒ b = 2.12 − 9 3 = 5
Lời giải:
Gọi hai số cần tìm là $a$ và $b$. Theo bài ra ta có:
\(\left\{\begin{matrix}
2a-3b=9\\
a^2-b^2=119\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
2a=3b+9\\
(2a)^2-(2b)^2=476\end{matrix}\right.\)
\(\Rightarrow (3b+9)^2-4b^2=476\)
\(\Leftrightarrow 5b^2+54b-395=0\)
$\Leftrightarrow (b-5)(5b+79)=0$
$\Rightarrow b=5$ hoặc $b=-\frac{79}{5}$
Với $b=5$ thì $a=\frac{3b+9}{2}=12$
Với $b=\frac{-79}{5}$ thì $a=\frac{3b+9}{2}=\frac{-96}{5}$
http://olm.vn/hoi-dap/question/296814.html
Bạn vào đây tham khảo nhé !!!
gọi số thứ nhất là a số thứ hai là b số ths 3 là c
ta có
ax2=bx3=cx5
ax2=bx3
=>a/3=b/2 =>a/15=b/10
bx3=cx5
=>b/5=c/3=>b/10=c/6
=>a/15=b/10=c/6
và a-c=72
=>a/15=c/6=a-c/15-6=72/9=8
=>số thứ hai là b/10=8=>b=80
Đáp án A