Trên parabol (P): y = x 2 ta lấy ba điểm phân biệt A (a; a 2 ); B (b; b 2 ); C (c; c 2 ) thỏa mãn a 2 – b = b 2 – c = c 2 – a . Hãy tính tích T = (a + b + 1)(b + c + 1)(c + a + 1)
A. T = 2
B. T = 1
C. T = −1
D. T = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=3 vào (d), ta được:
m+3-m=3
=>3=3(luôn đúng)
b: PTHĐGĐ là:
x^2-mx-3+m=0
=>x^2-mx+m-3=0
Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0
=>m<3
b: Phương trình hoành độ giao điểm là:
\(x^2+\left(m-2\right)x-m^2-1=0\)
\(ac=-m^2-1< 0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
b) Phương trình hoành độ giao điểm của (P) và (d) là
\(-x^2=x+m\Leftrightarrow x^2+x+m=0.\)
Để (d) cắt (P) tại hai điểm phân biệt có hoành độ cùng âm thì phương trình hoành độ phải có 2 nghiệm phân biệt đều âm hay
\(\hept{\begin{cases}\Delta.>0\\x_1+x_2=-\frac{b}{a}< 0\\x_1x_2=\frac{c}{a}>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1^2-4m>0\\-1< 0\\m>0\end{cases}\Leftrightarrow\hept{\begin{cases}4m< 1\\m>0\end{cases}\Leftrightarrow}}\hept{\begin{cases}m< \frac{1}{4}\\m>0\end{cases}\Leftrightarrow}0< m< \frac{1}{4}.\)
Vậy.............
a) Vẽ Parabol thì lập bảng xét các giá trị (xét khoảng 5 giá trị của (x,y) ), sau đó vẽ...
Thay m=-1 vô (d) rồi ...(cái này thì dễ r)
nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)
2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )
a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?
b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.
Tìm m sao cho: OH2 + OK2 = 6 mọi người hướng dẫ mk ý b vs
Đáp án A
Số cách chọn 3 điểm bất kì là C 30 3
Để 3 điểm đó lập thành một tam giác thì 3 điểm đó không thẳng hàng
Số cách chọn 1 điểm thuộc d 1
2 điểm thuộc d 2 : C 10 1 . C 20 2
Số cách chọn 2 điểm thuộc d 1
1 điểm thuộc d 2 : C 10 2 . C 20 1
Xác suất để 3 điểm chọn được tạo thành tam giác là
Đáp án A
Số cách chọn 3 điểm bất kì là: C 30 3
Để 3 điểm đó lập thành một tam giác thì 3 điểm đó không thẳng hàng:
Số cách chọn 1 điểm thuộc d 1 , 2 điểm thuộc d 2 : C 10 1 . C 20 2
Số cách chọn 2 điểm thuộc d 1 , 1 điểm thuộc d 2 : C 10 2 . C 20 1
Xác suất để 3 điểm chọn được tạo thành tam giác là: C 10 1 C 20 2 + C 10 2 C 20 1 C 30 3
Đáp án C