Cho parabol (P): y = x 2 và đường thẳng (d): y = mx + 1. Gọi A ( x 1 ; y 1 ) và B ( x 2 ; y 2 ) là các giao điểm của (d) và (P). Tìm m để biểu thức M = ( y 1 − 1 ) ( y 2 − 1 ) đạt giá trị lớn nhất.
A. m = 0
B. m = 2
C. m = 1
D. m = −1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (P) và (d) là \(^{x^2+mx-1=0}\)luông có hai nghiệm phân biệt (vì ac<0)
Tổng và tích hai nghiệm xa, xb là:
xa + xb = -m
xa . xb = -1
Ta có: xa2xb + xb2xa - xaxb = 3 \(\Leftrightarrow\)xaxb(xa + xb) - xaxb = 3 \(\Leftrightarrow\)m + 1 = 3 \(\Leftrightarrow\)m = 2
a) PT hoành độ giao điểm (d) (P)
mx-n+1=x2
<=> x2-mx+m-1=0
\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)
Vậy (d); (P) luôn cắt nhau tại 2 điểm phân biệt
b) \(x_1^2x_2+x_2^2x_1=2\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=2\)
\(\Leftrightarrow\left(m-1\right)m=2\)
<=> m2-m-2=0
\(\Leftrightarrow\orbr{\begin{cases}m=2\\m=-1\end{cases}}\)
a) phương trình hoành độ giao điểm của (d)và (P) là:
\(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)
TA CÓ: a=1, b'=\(\frac{-m}{2},\)c= m-1
\(\Rightarrow\)\(\Delta'\)=\(\left(b'\right)^2-ac=\left(\frac{-m}{2}\right)^2-\left(m-1\right).1\)\(=\frac{m^2}{4}-m+1\)
\(=\)\(\frac{m^2}{4}-2.\frac{m}{2}.1+1=\left(\frac{m}{2}-1\right)^2\)
\(\text{ để đường thẳng d và parabol ( P) cắt nhau tại 2 điểm phân biệt}:\)
\(\Delta'>0\Leftrightarrow\)\(\left(\frac{m}{2}-1\right)^2>0\Leftrightarrow m\ne2\)
vậy với m \(\ne2\) thì ......
Vì A là giao điểm của (d) với trục Oy nên x=0
=>y=-3
Lời giải:
Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$
Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:
$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất
Điều này xảy ra khi:
$\Delta=m^2+n=0(2)$
Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$
Nếu $m=1$ thì $n=-1$
Nếu $m=-2$ thì $n=-4$
Vậy............
Pt hoành độ giao điểm:
\(x^2-mx+m-1=0\)
\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2>0\Leftrightarrow m\ne2\)
\(\left\{{}\begin{matrix}\left|x_1\right|=x_2\Rightarrow x_2\ge0\\x_2>x_1\end{matrix}\right.\) \(\Rightarrow x_2=-x_1>0\)
\(\Leftrightarrow x_1+x_2=0\)
\(\Rightarrow m=0\)
a) Phương trình hoành độ giao điểm:
\(x^2=mx-m+1\)
\(\Leftrightarrow x^2-mx+m-1=0\)
\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow m-2\ne0\)
hay \(m\ne2\)
Vậy: Để (d) cắt (P) tại hai điểm phân biệt thì \(m\ne2\)
1) Phương trình hoành độ giao điểm của (P) và (d) là:
\(-x^2=mx-1\)
\(\Leftrightarrow-x^2-mx+1=0\)
a=-1; b=-m; c=1
Vì ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt với mọi m
2) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-m\right)}{-1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{1}{-1}=-1\end{matrix}\right.\)
Ta có: \(x_1^3+x_2^3=-4\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+4=0\)
\(\Leftrightarrow\left(-m\right)^3-3\cdot\left(-1\right)\cdot\left(-m\right)+4=0\)
\(\Leftrightarrow-m^3-3m+4=0\)
\(\Leftrightarrow m^3+3m-4=0\)
\(\Leftrightarrow m^3-m+4m-4=0\)
\(\Leftrightarrow m\left(m-1\right)\left(m+1\right)+4\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m+4\right)=0\)
\(\Leftrightarrow m-1=0\)
hay m=1
Đáp án A