cho ba số dương a,b,c thỏa mãn abc=1. CMR A=1/a^2 + 2b^2 +3 + 1/b^2+ 2c^2 +3 + 1/c^2+ 2a^2 +3 <= 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho ba số dương a,b,c thỏa mãn abc=1. CMR A=1/a^2 + 2b^2 +3 + 1/b^2+ 2c^2 +3 + 1/c^2+ 2a^2 +3 <= 1/2
BĐT cần chứng minh tương đương với :
\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)
Áp dụng BĐT Cô-si cho 3 số dương ,ta có :
\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)
tương tự : \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\), \(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)
Cộng 3 BĐT trên theo vế, ta được :
\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)
Dấu "=" xảy ra khi a = b = c = 1
Bài này chả khó với lại đầy người đăng rồi
Ta có: \(a^2+b^2\ge2ab\) và \(b^2+1\ge2b\)
\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\left(1\right)\)
Tương tự ta có: \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\left(3\right)\)
Cộng theo vế của \(\left(1\right);\left(2\right);\left(3\right)\) ta có:
\(VT\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)
\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)
\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}=VP\) (ĐPCM)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Ta có: \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)\(;b^2+1\ge2\sqrt{b^2\cdot1}=2b\)
\(\Rightarrow a^2+2b^2+3\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2}\left(ab+b+1\right)\left(1\right)\). Tương tự ta có:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\left(bc+c+1\right)\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(ac+a+1\right)\left(3\right)\)
Cộng theo vế của (1);(2) và (3) ta có:
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)
\(\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)=\frac{1}{2}\) (vì abc=1)
Suy ra Đpcm. Dấu "=" khi a=b=c=1
\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
Tương tự ...
\(\Rightarrow P\le\dfrac{1}{2\left(ab+b+1\right)}+\dfrac{1}{2\left(bc+c+1\right)}+\dfrac{1}{2\left(ca+a+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{c}{abc+bc+c}+\dfrac{1}{bc+c+1}+\dfrac{bc}{ca.bc+a.bc+bc}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{c}{1+bc+c}+\dfrac{1}{bc+c+1}+\dfrac{bc}{c+1+bc}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{c+1+bc}{1+bc+c}\right)=\dfrac{1}{2}\)
\(P_{max}=\dfrac{1}{2}\) khi \(a=b=c=1\)
Ta có: \(\dfrac{a^3}{a^2+2b^2}=a-\dfrac{2ab^2}{a^2+2b^2}\ge a-\dfrac{2ab^2}{3\sqrt[3]{a^2b^4}}=a-\dfrac{2}{3}\sqrt[3]{ab^2}\ge a-\dfrac{2}{9}\left(a+b+b\right)=a-\dfrac{2}{9}\left(a+2b\right)\) Chứng minh tương tự ta được:
\(\dfrac{b^3}{b^2+2c^2}\ge b-\dfrac{2}{9}\left(b+2c\right);\dfrac{c^3}{c^2+2a^2}\ge c-\dfrac{2}{9}\left(c+2a\right)\)
\(\Rightarrow\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge a+b+c-\dfrac{2}{9}\left(a+2b+b+2c+c+2a\right)=a+b+c-\dfrac{2}{9}\left(3a+3b+3c\right)=\dfrac{1}{3}\left(a+b+c\right)\ge\dfrac{1}{3}\cdot3\sqrt[3]{abc}=1\)Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)
Với 1/a + 1/b + 1/c = 1/(a + b + c) thì không thể nào có ĐK : a = b = c vì nó sẽ như sau :
1/a + 1/b + 1/c = 1/(a + b + c)
=> 3/a = 3/b = 3/c = 1/(a x 3) = 1/(b x 3) = 1/(c x 3) (rất vô lý)
Với 1/(a + b + c) thì phần tử rất nhỏ .
=> Dữ liệu không tồn tại.
Làm đc òi bác