tìm các số nguyên dương x,y thỏa x-y là số lẻ và \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2018}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2y}{x+7}=\frac{2018}{2017}\)
\(2017\left(x+2y\right)=2018\left(x+y\right)\)
\(2017x+4034y=2018x+2018y\)
\(x=2016y\)
x,y nguyên dương nên x nhỏ nhất khi y = 1
Khi đó x =...
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{a-b+b-c-a+c}{x+y-z}=\frac{0}{x+y-z}=0\)
\(\Rightarrow\frac{a-b}{x}=0\Leftrightarrow a-b=0\Leftrightarrow a=b\)
\(\frac{b-c}{y}=0\Leftrightarrow b-c=0\Leftrightarrow b=c\)
\(\frac{a-c}{z}=0\Leftrightarrow a-c=0\Leftrightarrow a=c\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Áp dụng TCDTSBN ta có :
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{\left(a-b\right)+\left(b-c\right)-\left(a-c\right)}{x+y-z}=\frac{0}{x+y-z}=0\)
\(\Rightarrow\frac{a-b}{x}=0\Rightarrow a-b=0\Rightarrow a=b\) (1)
\(\Rightarrow\frac{b-c}{y}=0\Rightarrow b-c=0\Rightarrow b=c\) (2)
\(\Rightarrow\frac{a-c}{z}=0\Rightarrow a-c=0\Rightarrow a=c\) (3)
Từ (1);(2) và (3) \(\Rightarrow a=b=c\) (đpcm)
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3
<=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2:
Ta có:
(a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0
Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
<=> \(\frac{y+x}{xy}=\frac{1}{2}\)
<=> \(2x+2y=xy\)
<=> \(2x-xy+2y=0\)
<=> \(x\left(2-y\right)+2y-4+4=0\)
<=> \(x\left(2-y\right)-2\left(2-y\right)=-4\)
<=>\(\left(x-2\right)\left(2-y\right)=-4\)
x;y duong nen ta co x-2 va 2-y la cac uoc cua -4
x-2 | 1 | -1 | 2 | -2 | 4 | -4 | ||||||
2-y | -4 | 4 | -2 | 2 | -1 | 1 | ||||||
x | ||||||||||||
y |
Từ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy}{2xy}\Rightarrow2x+2y=xy\)
\(\Rightarrow2y-xy=-2x\)
\(\Rightarrow y\left(2-x\right)=-2x\)
\(\Rightarrow y=-\frac{2x}{2-x}\)
\(\Rightarrow y=\frac{2x}{x-2}\)
\(\Rightarrow y=\frac{2x-4+4}{x-2}\)
\(\Rightarrow y=\frac{2\left(x-2\right)+4}{x-2}\)
\(\Rightarrow y=2+\frac{4}{x-2}\)
Vì y là số nguyên dương nên \(2+\frac{4}{x-2}\) dương
\(\Rightarrow\frac{4}{x-2}\) dương \(\Rightarrow x-2\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\)
\(x-2=1=>x=3\left(tm\right)\)
\(x-2=2=>x=0\left(lo\text{ại}\right)\)
\(x-2=4=>x=6\left(tm\right)\)
* Với \(x=3\Rightarrow y=2+\frac{4}{3-2}=2+4=6\left(tm\right)\)
*Với \(x=6=>y=2+\frac{4}{6-2}=2+1=3\left(tm\right)\)
Vậy các cặp số nguyên dương \(\left(x;y\right)\) cần tìm là \(\left(3;6\right);\left(6;3\right)\)
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2018}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{2018}\)
\(\Leftrightarrow2018x+2018y=xy\)
\(\Leftrightarrow\left(2018x-xy\right)-\left(2018^2-2018y\right)=-2018^2\)
\(\Leftrightarrow x\left(2018-y\right)-2018\left(2018-y\right)=-2018^2\)
\(\Leftrightarrow\left(x-2018\right)\left(y-2018\right)=2018^2\)
Vì \(x-y\) lẻ => x,y khác tính chẵn lẻ
Không mất tổng quát g/s x chẵn, y lẻ
=> (x-2018) chẵn và (y-2018) lẻ
Lại có \(2018^2=4\cdot1009^2=4036\cdot1009\)
Nên ta có các TH sau:
+ Nếu: \(\hept{\begin{cases}x-2018=4\\y-2018=1009^2\end{cases}}\Rightarrow\hept{\begin{cases}x=2022\\y=1009^2+2018\end{cases}}\)
+ Nếu: \(\hept{\begin{cases}x-2018=4036\\y-2018=1009\end{cases}}\Rightarrow\hept{\begin{cases}x=6054\\y=3027\end{cases}}\)
Vậy \(\left(x;y\right)=\left\{\left(2022;1009^2+2018\right);\left(6054;3027\right)\right\}\) và 2 hoán vị của nó