Cho tam giác ABC có BD và CE là các đường trung tuyến cắt nhau tại G
a) Tứ giác BEDC là hình gì? Vì sao?
b) Gọi M, N lần lượt là trung điểm của BG và CG. Chứng minh: Tứ giác MEDN là hình bình hành
c) Tam giác ABC có thêm điều kiện gì để tứ giác MEDN là hình chữ nhật
d) Chứng minh: \(S_{BEDC}=\frac{3}{4}S_{ABC}\)
bạn tự vẽ hình nha
a)Trong tam giác ABC có: E là trung điểm của AB; D là trung điểm của AC
=> ED là đường trung bình của ABC
=> ED//BC và ED=\(\frac{1}{2}\)BC (1)
=> tứ giác BEDC là hình thang
b) Trong tam giác CBG có: M là trung điểm của GB; N là trung điểm của GC
=> MN là đường trung bình của tam giác CBG
=> MN//BC và MN=\(\frac{1}{2}\)BC (2)
Từ (1) và (2) => ED//MN và ED = MN
=> tứ giác MEDN là hình bình hành
c) Tứ giác MEDN là hcn <=> MEDN là hbh
Có 2 đường chéo bằng nhau <=> EN = DM
Mà EN = \(\frac{2}{3}\)EC; DM = \(\frac{2}{3}\)DB
Lại có: hình thang BEDC có EC = BD
=> BEDC là hình thang cân tại A
Vậy tam giác ABC tại thì tứ giác MEDN là hcn