K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

a: Xét ΔAMD vuông tại M và ΔCNB vuông tại N có 

AD=CB

\(\widehat{ADM}=\widehat{CBN}\)

Do đó: ΔAMD=ΔCNB

Suy ra: AM=CN

31 tháng 10 2021

undefinedundefined

1 tháng 11 2020

a. Tứ giác ABCD là hình bình hành.

\(\Rightarrow AB=CD\)(tính chất hình bình hành)

và \(AB//CD\Rightarrow\widehat{ABD}=\widehat{BDC}\)(so le trong)

Xét \(\Delta AMB\)và \(\Delta CND\)có:

\(AB=CD\)(cmt)

\(\widehat{ABM}=\widehat{CDN}\)(cmt)

\(BM=DN\)(GT)

\(\Rightarrow\Delta AMB=\Delta CND\left(c.g.c\right)\)

b. Có AC cắt BD tại O

=> O là trung điểm của AC => OA = OC.

=> O là trung điểm của BD => OB = OD.

Có OB = OM + MD 

OD = ON + ND

mà OB = OD, MB = ND

=> OM = ON => O là trung điểm của MN.

Trong tứ giác AMCN có:

OA = OC, OM = ON

=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

4 tháng 10 2021

không biết tớ trả trước mà

4 tháng 10 2021

a. Tứ giác ABCD là hình bình hành.

⇒AB=CD(tính chất hình bình hành)

và AB//CD⇒ABD^=BDC^(so le trong)

Xét ΔAMBvà ΔCNDcó:

AB=CD(cmt)

ABM^=CDN^(cmt)

BM=DN(GT)

⇒ΔAMB=ΔCND(c.g.c)

b. Có AC cắt BD tại O

=> O là trung điểm của AC => OA = OC.

=> O là trung điểm của BD => OB = OD.

Có OB = OM + MD 

OD = ON + ND

mà OB = OD, MB = ND

=> OM = ON => O là trung điểm của MN.

Trong tứ giác AMCN có:

OA = OC, OM = ON

=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

25 tháng 8 2021

a/ Xét △AMD vuông tại M và △CNB vuông tại N có:

\(AD=BC\) (ABCD là hình bình hành)

\(\hat{ADM}=\hat{CBN}\) (AD // BC)

⇒ △AMD = △CNB (c.h-g.n) ⇒ AM=NC (1)

\(\begin{matrix}AM\perp MN\\AN\perp NC\end{matrix}\left(gt\right)\Rightarrow AM\text{ // }NC\left(2\right)\)

Từ (1) và (2). Vậy: AMCN là hình bình hành (đpcm)

============

b/ AC và MN là hai đường chéo của hình bình hành AMNC

- Mà I là trung điểm MN

Vậy: I là trung điểm của AC (Trong hình bình hành, hai đường chéo cắt nhau tại trung điểm của mỗi đường) (đpcm)

Xét ΔADM vuông tại M và ΔCBN vuông tại N có 

AD=BC

\(\widehat{ADM}=\widehat{CBN}\)

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Suy ra: Hai đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của MN

nên I là trung điểm của AC

17 tháng 6 2019

Câu a thôi nhé:

do ABCDlà hbh

=> AD=BC

AB//CD=>NB//CD

AD//BC => AD//CK

vì NB//CD

=>DMMK=ADCKDMMK=ADCK (theo hệ quả ta-lét)

mà AD=BC

=> DMMK=BCCKDMMK=BCCK (*)

vì AD//CK

=> DNDK=BCCKDNDK=BCCK (theo đl ta-lét) (**)

Từ (*) và (**) ta có

DNDK=DMMKDNDK=DMMK =>MKDK=DMDNMKDK=DMDN

ta có

DMDN+DMDK=MKDK+DMDK=DKDK=1DMDN+DMDK=MKDK+DMDK=DKDK=1 (đpc

Câu b ko biết làm

P.s:Hok tốt

22 tháng 10 2021

a: Xét ΔAMB và ΔCND có 

AB=CD

\(\widehat{ABM}=\widehat{CDN}\)

BM=DN

Do đó: ΔAMB=ΔCND