K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

Để P nguyên thì \(n-1\in\left\{1;-1\right\}\)

hay n=2(vì n là số nguyên tố)

31 tháng 10 2021

cảm ơn bn

đề bài là -2n+9 là số nguyên tố chứ

20 tháng 4 2019

Nếu vậy thì giải dùm tớ

Xét p = 2 => p + 10 = 12 không là số nguyên tố
Xét p = 3 => p + 10 = 13 là số nguyên tố, p + 20 = 23 là số nguyên tố.
=> Chôn p = 3.
Xét p > 3 mà p là số nguyên tố => p có dạng p = 3k + 1 hoặc p = 3k + 2
+ Nếu p = 3k + 1 => p + 20 = 3k + 21 = 3(k +7) chia hết cho 3
Mà p > 3 => p + 20 không là số nguyên tố (vô lý)
+ Nếu p = 3k + 2 => p + 10 = 3k + 12 = 3(k + 4) chia hết cho 3
Mà p >3 => p + 10 không là số nguyên tố (vô lý)
Vậy p =3

b) Có 4n+5 chia hết cho 2n+1

=>2(n+1)+3 chia hết cho 2n+1

=>2n+1 thuộc Ư(3)={1;3}

Với 2n+1=1    =>n=0

Với 2n+1=3      =>n=1

Vì đề bài là tìm số tự nhiên n nên 3 chỉ có 2 ước thôi nha

16 tháng 3 2020

a, p là số nguyên tố

+ xét p = 2 => p + 10 = 2 + 10 = 12 là hợp số 

=> p = 2 (loại)

+ xét p= 3 => p + 10 = 3 + 13 = 13 thuộc P

                      p + 20 = 3 + 20 = 23 thuộc P

=> p = 3 (nhận)

+ p là số nguyên tố và p > 3

=> p = 3k + 1 hoặc  p = 3k + 2

xét p = 3k + 1 => p + 20 = 3k + 1 + 20 = 3k + 21 = 3(k + 7) là hợp số

=> p = 3k + 1 loaị

+ xét p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4) là hợp số

=> p = 3k + 2 loại

vậy p  = 3

b, 4n + 5 chia hết cho 2n + 1

=> 4n + 2 + 3 chia hết cho 2n + 1

=> 2(2n + 1) + 3 chia hết cho 2n + 1

=> 3 chia hết cho  2n + 1

xét ư(3) là ok nhé

21 tháng 8 2021

xét n = 2 => 4n + 1 = 2.4 + 1 = 9 (không là số nguyên tố)

=> n = 2 (loại)

xét n = 3 => 2n + 1 = 2.3 + 1 = 7 (thỏa mãn)

                    4n + 1 = 3.4 + 1 = 13 (thỏa mãn)

=> n = 3 (chọn)

xét n là số nguyên tố, n > 3 => n = 3k + 1 hoặc n = 3k + 2

với n = 3k + 1 => 2n + 1 = 2(3k + 1) + 1 = 6k + 2 = 2(k + 1) (là hợp số)

=> n = 3k + 1 (loại)

với n = 3k + 2 => 4n + 1 = 4(3k + 2) + 2 = 12k + 10 = 2(6k + 5) (là hợp số)

=> n = 3k + 2 (loại)

vậy n = 3

                    

13 tháng 12 2016

1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2

2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên

=>n+1;2n+3 chia hết cho a

=>2.(n+1);2n+3 chia hết cho a

=>2n+2;2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=>1 chia hết cho a

=>a=1

=>n+1 và 2n+3 là hai số nguyên tố cùng nhau

25 tháng 10 2021

a: \(\left\{{}\begin{matrix}n+2⋮d\\n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy: với mọi số nguyên n thì n+2 và n+3 là hai số nguyên tố cùng nhau