K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Đáp án B.

Phương pháp: Tính khoảng cách từ A đến (SBC) và so sánh khoảng cách từ O đến (SBC) với khoảng cách từ A đến (SBC)

Cách giải: Tam giác ABC có góc ABC = 600 => ∆ABC đều cạnh a.

Gọi M là trung điểm của BC => AMBC. Trong mặt phẳng (SAM) kẻ AHSM ta có

Tam giác ABC đều cạnh a nên 

Ta có : 

Ta có 

24 tháng 6 2019

Đáp án B

12 tháng 10 2019

23 tháng 11 2017

  Đáp án A

12 tháng 10 2019

Chọn đáp án B.

Ta có: 

Vì AB = BC = a, 

Gọi M là trung điểm BC.

Do đó: 

Gọi H là hình chiếu của A lên SM.

Do đó: 

 

Xét tam giác SAM vuông tại A:

Vậy 

1 tháng 10 2017

Chọn đáp án A

16 tháng 6 2017

Chọn B.

Gọi O = AC ∩ BD. Vì ABCD là hình thoi nên BO ⊥ AC(1). Lại do:

Từ (1) và (2) ta có:BO ⊥ (SAC)

Ta có: 

Vì ABCD là hình thoi có ABC = 60 ° nên tam giác ABC đều cạnh a

Trong tam giác vuông SBO ta có: 

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

27 tháng 2 2023

đề yêu cầu gì vậy em

15 tháng 2 2017

Đáp án C