Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a, A B C ^ = 60 0 ,SA ⊥ (ABCD), SA = 3 a 2 . Gọi O là tâm của hình thoi ABCD. Khoảng cách từ điểm O đến (SBC) bằng
A. 5 a 4
B. 3 a 8
C. 5 a 8
D. 3 a 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án B.
Ta có:
Vì AB = BC = a,
Gọi M là trung điểm BC.
Do đó:
Gọi H là hình chiếu của A lên SM.
Do đó:
Xét tam giác SAM vuông tại A:
Vậy
Chọn B.
Gọi O = AC ∩ BD. Vì ABCD là hình thoi nên BO ⊥ AC(1). Lại do:
Từ (1) và (2) ta có:BO ⊥ (SAC)
Ta có:
Vì ABCD là hình thoi có ABC = 60 ° nên tam giác ABC đều cạnh a
Trong tam giác vuông SBO ta có:
Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).
Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A.
Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A
Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.
Đáp án B.
Phương pháp: Tính khoảng cách từ A đến (SBC) và so sánh khoảng cách từ O đến (SBC) với khoảng cách từ A đến (SBC)
Cách giải: Tam giác ABC có góc ABC = 600 => ∆ABC đều cạnh a.
Gọi M là trung điểm của BC => AM ⊥ BC. Trong mặt phẳng (SAM) kẻ AH ⊥ SM ta có
Tam giác ABC đều cạnh a nên
Ta có :
Ta có