K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

Điều kiện xác định: x ≠ 0 .

Đặt  t = x + 1 x ⇒ t 2 − 2 = x 2 + 1 x 2 ≥ 2 ⇒ t ≥ 2 ⇔ t ≥ 2 t ≤ − 2

Phương trình đã cho trở thành  2 t 2 − 2 − 3 t − 2 m + 1 = 0

⇔ 2 t 2 − 3 t − 2 m − 3 = 0 ⇔ 2 t 2 − 3 t − 3 = 2 m      ( 1 )

Xét hàm số y = f ( t ) = 2 t 2 − 3 t − 3 có bảng biến thiên:

(1) Có nghiệm t thỏa mãn t ≥ 2 t ≤ − 2     k h i    2 m ≥ − 1 2 m ≥ 11 ⇔ m ≥ − 1 2 ⇒ S = − 1 2 ; + ∞

Vậy T = 3

Đáp án cần chọn là: D

9 tháng 7 2019

10 tháng 5 2017

30 tháng 10 2017

Đáp án B.

Đặt t = log2 x,

khi đó  m + 1 log 2 2   x + 2 log 2   x + m - 2 = 0

⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).

Để phương trình (*) có hai nghiệm phân biệt

Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).

Vì 0 < x1 < 1 < x2 suy ra

12 tháng 6 2019

2 tháng 3 2022

cs nghiệm là?..

NV
2 tháng 3 2022

\(\Leftrightarrow3\left|x-1\right|+6-3m=\left|x-1\right|+m-5\)

\(\Leftrightarrow2\left|x-1\right|=4m-11\)

Do \(2\left|x-1\right|\ge0\) với mọi x nên pt có nghiệm khi:

\(4m-11\ge0\Rightarrow m\ge\dfrac{11}{4}\)

NV
20 tháng 1 2021

Câu 2 bạn ghi thiếu đề

Câu 1:

\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)

\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)

BPT đã cho vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)