K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

Đáp án C

Phương pháp:

+) Công thức khai triển nhị thức Newton: 

+) 

Cách giải:

Với n =15: 

Hệ số chứa  x 10 ứng với i = 10 và bằng 

14 tháng 11 2017

\(C^1_n+C^2_n=15\)

=>\(n+\dfrac{n!}{\left(n-2\right)!\cdot2!}=15\)

=>\(n+\dfrac{n^2-n}{2}=15\)

=>2n+n^2-n=30

=>n^2+n-30=0

=>n=5

=>(x+2/x^4)^5

SHTQ là: \(C^k_5\cdot x^{5-k}\cdot\left(\dfrac{2}{x^4}\right)^k=C^k_5\cdot x^{5-5k}\cdot2^k\)

SỐ hạng ko chứa x tương ứng với 5-5k=0

=>k=1

=>Số hạng đó là 5*2=10

27 tháng 11 2018

Chọn D

6 tháng 5 2019

Chọn A

10 tháng 8 2018

Chọn D

4 tháng 11 2019

Đáp án D.

Phương pháp

Sử dụng công thức C n k = n ! k ! n − k !  tìm n.

Sử dụng khai triển nhị thức Newton 

a + b n = ∑ k = 0 n C n k . a n − k . b k

Cách giải

 

20 tháng 12 2019

3 tháng 1 2018

Đáp án A.