K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

25 tháng 2 2022

a, Xét tứ giác BCEF có 

^CEB = ^CFB = 900

mà 2 góc này kề, cùng nhìn cạnh BC 

Vậy tứ giác BCEF là tứ giác nt 1 đường tròn 

b, Xét tứ giác AEHF có 

^HEA = ^HFA = 900

Vậy tứ giác AEHF là tứ giác nt 1 đường tròn 

c, Ta có ^AMN = ^ACN ( góc nt chắn cung AN ) 

^ANM = ^MBA ( góc nt chắn cung MA ) 

mà ^ACN = ^MBA ( tứ giác BCEF nt và 2 góc cùng nhìn cung CF ) 

=> ^AMN = ^ANM Vậy tam giác AMN cân tại A

=> AN = AM 

d, Ta có : ^CBM = ^CFE ( góc nt chắn cung CE của tứ giác BCEF ) 

mặt khác : ^CNM = ^CBM ( góc nt chắn cung CM ) 

=> ^CFE = ^CNM, mà 2 góc này ở vị trí đồng vị ) 

=> MN // EF 

e, Ta có AO là đường cao tam giác MAN 

mà MN // EF ; AO vuông MN => AO vuông EF 

25 tháng 2 2022

4 năm nửa em mới TL dc

a: Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó:BCEF là tứ giác nội tiếp

b: Xét tứ giác AEHF có 

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó: AEHF là tứ giác nội tiếp

25 tháng 2 2022

giúp mình câu c,d,e đi

 

a: Xét tứ giác BFEC có 

\(\widehat{BEC}=\widehat{BFC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

hay B,F,E,C cùng thuộc 1 đường tròn

a: ΔAHB vuông tại H có HE là đường cao

nên AH^2=AE*AB

b: ΔAHC vuông tại H có HF là đường cao

nên AH^2=AF*AC

=>AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

 

1: Xét tứ giác AEHF có 

\(\widehat{AFH}+\widehat{AEH}=180^0\)

Do đó: AEHF là tứ giác nội tiếp

hay A,E,H,F cùng thuộc 1 đường tròn

3 tháng 9 2021

chưa học tứ giác nội tiếp thì xét ntn ạ ?

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn