lx+3l+l7-xl=10
Giải phươn trình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: |1-5x|-1=3
=>|5x-1|=4
=>5x-1=4 hoặc 5x-1=-4
=>5x=5 hoặc 5x=-3
=>x=1 hoặc x=-3/5
2: 4|2x-1|+3=15
=>4|2x-1|=12
=>|2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>x=2 hoặc x=-1
3,\(\left|x+4\right|=2x+1\)
TH1: x+4≥0⇔x≥-4,pt có dạng:
x+4=2x+1⇔-x=-3⇔x=3(t/m)
TH2:x+4<0⇔x<-4,pt có dạng:
-x-4=2x+1⇔-3x=5⇔x=\(\dfrac{-5}{3}\)(loại)
Vậy pt đã cho có tập nghiệm S=\(\left\{3\right\}\)
4,\(\left|3x+4\right|=x-3\)
TH1: 3x-4≥0⇔3x≥4⇔x≥\(\dfrac{4}{3}\),pt có dạng:
3x-4=x-3⇔2x=1⇔x=\(\dfrac{1}{2}\)(loại)
TH2: 3x-4<0⇔3x<4⇔x<\(\dfrac{4}{3}\),pt có dạng:
-3x+4=x-3⇔-4x=-7 ⇔x=1,75(loại)
Vậy pt đã cho vô nghiệm
Chia từng khoảng x ra để bỏ tất cả trị tuyệt đối rồi làm; có vẻ là rất dài.
\(\frac{7}{2}\)(ở đây do mình lười nên mình không ghi cái lời giải đâu nhá :V à và cái này không biết đúng hay sai đâu :V)
| x - 3 | = | 4 - x |
\(\Rightarrow\orbr{\begin{cases}x-3=4-x\\x-3=-4+x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=7\\0x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\\text{không có GT x nào thỏa mãn}\end{cases}}\)
a,|x+1/2|=2/5
\(\Rightarrow\)\(\orbr{\begin{cases}\frac{x+1}{2}\\\frac{x+1}{2}\end{cases}}\)=+-2/5
x+1/2=2/5\(\Rightarrow\)x+1=4/5\(\Rightarrow\)x=9/5
x+1/2=-2/5\(\Rightarrow\)x+1=-4/5\(\Rightarrow\)x=1/5
Vậy x\(\in\){1/5;9/5}
Có: \(\hept{\begin{cases}\left|x+3\right|\ge x+3\\\left|8-x\right|\ge8-x\end{cases}}\)với mọi x
Do đó, \(\left|x+3\right|+\left|8-x\right|+5\ge\left(x+3\right)+\left(8-x\right)+5=16\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+3\ge0\\8-x\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-3\\x\le8\end{cases}}\)\(\Rightarrow-3\le x\le8\)
Vậy GTNN của |x + 3| + |8 - x| + 5 là 16 khi \(-3\le x\le8\)
H=/3-x/+/4+x/>=/3-x+x+4/=7. Min=7 khi (3-x)(4+x)>=0 hay -4<=x<=3
1.a) |x - 3/2| + |2,5 - x| = 0
=> |x - 3/2| = 0 và |2,5 - x| = 0
=> x = 3/2 và x = 2,5 (Vô lý vì x không thể xảy ra 2 trường hợp trong cùng 1 biểu thức).
Vậy x rỗng.
Ta có |x + 3| + |7 - x| \(\ge\left|x+3+7-x\right|=\left|10\right|=10\)
Dấu "=" xảy ra <=> \(\left(x+3\right)\left(7-x\right)\ge0\)
Xét các trường hợp
TH1 : \(\hept{\begin{cases}x+3\ge0\\7-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-3\\x\le7\end{cases}}\Rightarrow-3\le x\le7\)(tm)
TH2 \(\hept{\begin{cases}x+3\le0\\7-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-3\\x\ge7\end{cases}}\left(\text{loại}\right)\)
Vậy \(-3\le x\le7\)là giá trị cần tìm