K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2020

Thôi bt làm rồi nha :)

NV
15 tháng 2 2022

3.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)

Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)

Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)

Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải

NV
15 tháng 2 2022

1. Có 2 cách giải:

C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)

\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)

\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

THay x =2 vào phương trình:

8m - 8 +12 +m^2+4 = 0

m^2+ 8m + 8 =0

(m+4)^2 =8

m+4 = căn 8 hay m+4 = âm căn 8

m = căn 8 -4 hay m = âm căn 8 -4

Càng đọc đề càng khó hiểu, ghi lại cho rõ hơn được không??

26 tháng 2 2019

Dạng này chỉ cần thay x vào phương trình rồi giải phương trình tìm m là xong.

Bạn làm luôn thực hành đi :)

9 tháng 3 2023

\(a,2x^2+12x-15m\)

Để pt có 2 nghiệm trái dấu thì \(\dfrac{c}{a}< 0\)

\(\Rightarrow\dfrac{-15m}{2}< 0\)

\(\Rightarrow-15m< 0\)

\(\Rightarrow m>0\)

Vậy để pt trên có 2 nghiệm trái dấu thì \(m>0\)

\(b,mx^2-2\left(m-2\right)x-3=0\)

Để pt có 2 nghiệm trái dấu thì \(\dfrac{c}{a}< 0\) và \(a\ne0\)

\(\left\{{}\begin{matrix}\dfrac{c}{a}< 0\\a\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{m}< 0\\m\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3< 0\left(LD\right)\\m\ne0\end{matrix}\right.\)

Vậy để pt trên có 2 nghiệm trái dấu thì \(m\ne0\)

 

 

12 tháng 1 2017

mình hơi băn khoăn về cái đề nhưng nếu bạn ghi đúng đề thì giải cái pt 1 ra đi, x = bao nhiêu thì thay x vào pt 2, rồi tìm m, mình mới nghĩ ra cái đấy, chứ chưa hiểu cái đề lắm

13 tháng 1 2017

trong sách ghi chỉ có như vậy thôi bạn nhé

5 tháng 1 2021

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

5 tháng 1 2021

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

a:

TH1: m=0

=>5x^2-1=0(nhận)

TH2: m<>0

Đặt x^4=a

=>ma^2+5a-1=0

Δ=5^2-4*m*(-1)=25+4m

Để phương trình có hai nghiệm phân biệt thì 4m+25>0

=>m>-25/4

b: TH1: m=-2

=>3x^2-1=0(nhận)

TH2: m<>-2

Đặt x^2=a

=>(m+2)*a^2+3a-1=0

Δ=3^2-4(m+2)*(-1)=4m+8+9=4m+17

Để pt có 2 nghiệm pb thì 4m+17>0

=>m>-17/4