K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

\(B=\frac{2^3}{3.5}+\frac{2^3}{5.7}+....+\frac{2^3}{101.103}\)

\(\Rightarrow\frac{1}{2^2}.B=\frac{2}{3.5}+\frac{2}{4.7}+....+\frac{2}{101.103}\)

\(\Rightarrow\frac{1}{4}.B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\)

\(\Rightarrow\frac{1}{4}.B=\frac{1}{3}-\frac{1}{103}=\frac{100}{309}\)

\(\Rightarrow B=\frac{100}{309}:\frac{1}{4}=\frac{400}{309}\)

25 tháng 2 2018

\(=2^2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{101.103}\right)\)

\(=4\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{103}\right)\)

\(=4\left(\frac{1}{3}-\frac{1}{103}\right)\)

\(=4\cdot\frac{100}{309}=\frac{400}{309}\)

12 tháng 8 2016

2/3.5 + 2/5.7 + 2/7.9 + ... + 2/41.43

= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/41 - 1/43

= 1/3 - 1/43

= 40/129

ỦNG HỘ NHA

12 tháng 8 2016

2/3.5 + 2/5.7 + 2/7.9 +......+ 2/41.43

= 1/3-1/5 + 1/5-1/7 + 1/7-1/9 +.....+ 1/41-1/43

= 1/3-1/43

= 40/129.

16 tháng 10 2019

1-1/3-1/65

16 tháng 10 2019

\(A=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{63.65}\)

\(A=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{63-65}\right)\)

\(A=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{63}-\frac{1}{65}\right)\)

\(A=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)

\(A=1-\frac{62}{195}\)

\(A=\frac{133}{195}\)

5 tháng 3 2017

Đề bài sai 

5 tháng 3 2017

\(A=\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.100}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\)

31 tháng 3 2019

a)Ta có:

\(A=4\frac{25}{16}+25\left(\frac{9}{16}:\frac{125}{64}\right):\frac{-27}{8}\)

\(\Rightarrow A=\frac{89}{16}+25.\frac{36}{125}:\frac{-27}{8}\)

\(\Rightarrow A=\frac{89}{16}+\frac{36}{5}:\frac{-27}{8}\)

\(\Rightarrow A=\frac{89}{16}+\frac{-32}{15}\)

\(\Rightarrow A=\frac{823}{240}\)

Vậy A=.....

b)Ta có:

\(C=\frac{2^3}{3.5}+\frac{2^3}{5.7}+\frac{2^3}{7.9}+...+\frac{2^3}{101.103}\)

\(\Rightarrow C=\frac{2^2.2}{3.5}+\frac{2^2.2}{5.7}+\frac{2^2.2}{7.9}+...+\frac{2^2.2}{101.103}\)

\(\Rightarrow C=2^2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{101.103}\right)\)

\(\Rightarrow C=4\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{101}-\frac{1}{103}\right)\)

\(\Rightarrow C=4\left(\frac{1}{3}-\frac{1}{103}\right)\)

\(\Rightarrow C=4.\frac{100}{309}\)

\(\Rightarrow C=\frac{400}{309}\)

Vậy C=.....

31 tháng 3 2019

B, C=2^3/3.5 + 2^3/5.7+......+2^3/101.103

C= 2^3(1/3-1/5+1/5-1/7+....+1/101-1/103)

C=8(1/3-1/103)

C=8.100/309

C=800/309

VẬY C= 800/309

3 tháng 5 2017

\(M=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}=\frac{1}{5}\)

\(N=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)

3 tháng 5 2017

N=1/2x(1/3-1/5+1/5-1/7+....+1/99-1/101)

N=1/2x(1/3-1/101)

N=1/2x98/101

N=49/101

10 tháng 5 2018

A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)

=3/2x4/3x...............x100/99

=2-1/99

=197/99

10 tháng 5 2018

A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)

A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)

A=\(\frac{100}{2}=50\)

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%

8 tháng 11 2017

\(A=\frac{1^2}{1.3}+\frac{2^2}{3.5}+...+\frac{1006^2}{2011.2013}\)

\(\Leftrightarrow4A=\frac{2^2.1^2}{2^2-1}+\frac{2^2.2^2}{4^2-1}+...+\frac{2^2.1006^2}{2012^2-1}\)

\(=1006+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2011.2013}\right)\)

\(=1006+\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)

\(=1006+\frac{1}{2}\left(1-\frac{1}{2013}\right)=\frac{2026084}{2013}\)

\(\Rightarrow A=\frac{506521}{2013}\)